Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(8): 3014-3022, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37481776

RESUMO

Genetically encoded pH sensors based on fluorescent proteins are valuable tools for the imaging of cellular events that are associated with pH changes, such as exocytosis and endocytosis. Superecliptic pHluorin (SEP) is a pH-sensitive green fluorescent protein (GFP) variant widely used for such applications. Here, we report the rational design, development, structure, and applications of Lime, an improved SEP variant with higher fluorescence brightness and greater pH sensitivity. The X-ray crystal structure of Lime supports the mechanistic rationale that guided the introduction of beneficial mutations. Lime provides substantial improvements relative to SEP for imaging of endocytosis and exocytosis. Furthermore, Lime and its variants are advantageous for a broader range of applications including the detection of synaptic release and neuronal voltage changes.


Assuntos
Neurônios , Proteínas de Fluorescência Verde/química , Neurônios/metabolismo , Concentração de Íons de Hidrogênio
2.
Neuron ; 111(10): 1547-1563.e9, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37015225

RESUMO

The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.


Assuntos
Enzima de Conversão de Angiotensina 2 , Rodopsina , Camundongos , Animais , Potenciais de Ação/fisiologia , Rodopsina/genética , Neurônios/fisiologia , Mutação/genética
3.
Neurophotonics ; 9(Suppl 1): 013001, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35493335

RESUMO

Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.

4.
Nat Chem Biol ; 17(6): 718-723, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795886

RESUMO

Functional imaging using fluorescent indicators has revolutionized biology, but additional sensor scaffolds are needed to access properties such as bright, far-red emission. Here, we introduce a new platform for 'chemigenetic' fluorescent indicators, utilizing the self-labeling HaloTag protein conjugated to environmentally sensitive synthetic fluorophores. We solve a crystal structure of HaloTag bound to a rhodamine dye ligand to guide engineering efforts to modulate the dye environment. We show that fusion of HaloTag with protein sensor domains that undergo conformational changes near the bound dye results in large and rapid changes in fluorescence output. This generalizable approach affords bright, far-red calcium and voltage sensors with highly tunable photophysical and chemical properties, which can reliably detect single action potentials in cultured neurons.


Assuntos
Corantes Fluorescentes/química , Hidrolases/química , Potenciais de Ação/efeitos dos fármacos , Animais , Bioengenharia , Cálcio/química , Células Cultivadas , Cristalografia por Raios X , Fenômenos Eletrofisiológicos , Corantes Fluorescentes/síntese química , Hidrolases/síntese química , Cinética , Conformação Molecular , Estrutura Molecular , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Proteínas/química , Ratos , Rodaminas
5.
Elife ; 92020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931424

RESUMO

Understanding how the brain encodes and processes information requires the recording of neural activity that underlies different behaviors. Recent efforts in fluorescent protein engineering have succeeded in developing powerful tools for visualizing neural activity, in general by coupling neural activity to different properties of a fluorescent protein scaffold. Here, we take advantage of a previously unexploited class of reversibly switchable fluorescent proteins to engineer a new type of calcium sensor. We introduce rsCaMPARI, a genetically encoded calcium marker engineered from a reversibly switchable fluorescent protein that enables spatiotemporally precise marking, erasing, and remarking of active neuron populations under brief, user-defined time windows of light exposure. rsCaMPARI photoswitching kinetics are modulated by calcium concentration when illuminating with blue light, and the fluorescence can be reset with violet light. We demonstrate the utility of rsCaMPARI for marking and remarking active neuron populations in freely swimming zebrafish.


Assuntos
Encéfalo/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Engenharia de Proteínas/métodos , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Cálcio/análise , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/efeitos da radiação , Neurônios/química , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/efeitos da radiação
6.
Nat Commun ; 11(1): 3444, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651384

RESUMO

Imaging membrane voltage from genetically defined cells offers the unique ability to report spatial and temporal dynamics of electrical signaling at cellular and circuit levels. Here, we present a general approach to engineer electrochromic fluorescence resonance energy transfer (eFRET) genetically encoded voltage indicators (GEVIs) with positive-going fluorescence response to membrane depolarization through rational manipulation of the native proton transport pathway in microbial rhodopsins. We transform the state-of-the-art eFRET GEVI Voltron into Positron, with kinetics and sensitivity equivalent to Voltron but flipped fluorescence signal polarity. We further apply this general approach to GEVIs containing different voltage sensitive rhodopsin domains and various fluorescent dye and fluorescent protein reporters.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Potenciais de Ação/fisiologia , Animais , Proteínas Luminescentes/metabolismo , Neurônios/metabolismo , Neurociências/métodos , Rodopsina/química , Rodopsina/metabolismo
9.
Science ; 365(6454): 699-704, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31371562

RESUMO

Genetically encoded voltage indicators (GEVIs) enable monitoring of neuronal activity at high spatial and temporal resolution. However, the utility of existing GEVIs has been limited by the brightness and photostability of fluorescent proteins and rhodopsins. We engineered a GEVI, called Voltron, that uses bright and photostable synthetic dyes instead of protein-based fluorophores, thereby extending the number of neurons imaged simultaneously in vivo by a factor of 10 and enabling imaging for significantly longer durations relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In the mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously over a 15-minute period of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.


Assuntos
Monitorização Fisiológica/métodos , Neuroimagem/métodos , Neurônios/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Comportamento Animal , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Engenharia Genética , Larva , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Camundongos , Optogenética , Domínios Proteicos , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Natação , Peixe-Zebra
10.
Nat Methods ; 16(8): 778-786, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31363222

RESUMO

Point-scanning two-photon microscopy enables high-resolution imaging within scattering specimens such as the mammalian brain, but sequential acquisition of voxels fundamentally limits its speed. We developed a two-photon imaging technique that scans lines of excitation across a focal plane at multiple angles and computationally recovers high-resolution images, attaining voxel rates of over 1 billion Hz in structured samples. Using a static image as a prior for recording neural activity, we imaged visually evoked and spontaneous glutamate release across hundreds of dendritic spines in mice at depths over 250 µm and frame rates over 1 kHz. Dendritic glutamate transients in anesthetized mice are synchronized within spatially contiguous domains spanning tens of micrometers at frequencies ranging from 1-100 Hz. We demonstrate millisecond-resolved recordings of acetylcholine and voltage indicators, three-dimensional single-particle tracking and imaging in densely labeled cortex. Our method surpasses limits on the speed of raster-scanned imaging imposed by fluorescence lifetime.


Assuntos
Córtex Cerebral/fisiologia , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Tomografia/métodos , Animais , Cálcio/metabolismo , Córtex Cerebral/citologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Fótons , Ratos
11.
J Neurosci ; 39(25): 4889-4908, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30952812

RESUMO

Optical tools for simultaneous perturbation and measurement of neural activity open the possibility of mapping neural function over wide areas of brain tissue. However, spectral overlap of actuators and reporters presents a challenge for their simultaneous use, and optical scattering and out-of-focus fluorescence in tissue degrade resolution. To minimize optical crosstalk, we combined an optimized variant (eTsChR) of the most blue-shifted channelrhodopsin reported to-date with a nuclear-localized red-shifted Ca2+ indicator, H2B-jRGECO1a. To perform wide-area optically sectioned imaging in tissue, we designed a structured illumination technique that uses Hadamard matrices to encode spatial information. By combining these molecular and optical approaches we made wide-area functional maps in acute brain slices from mice of both sexes. The maps spanned cortex and striatum and probed the effects of antiepileptic drugs on neural excitability and the effects of AMPA and NMDA receptor blockers on functional connectivity. Together, these tools provide a powerful capability for wide-area mapping of neuronal excitability and functional connectivity in acute brain slices.SIGNIFICANCE STATEMENT A new technique for simultaneous optogenetic stimulation and calcium imaging across wide areas of brain slice enables high-throughput mapping of neuronal excitability and synaptic transmission.


Assuntos
Anticonvulsivantes/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Imagem Óptica/métodos , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Células HEK293 , Humanos , Camundongos , Rede Nervosa/efeitos dos fármacos , Optogenética , Estimulação Luminosa , Ratos
12.
APMIS ; 127(2): 93-105, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30698308

RESUMO

This study aims to assess the value of carbamoyl phosphate synthetase 1 (CPS1), as a non-invasive serum marker, for the evolution of chronic HCV infection and hepatic fibrosis. Seventy-two patients with HCV positive serum RNA and 15 health volunteers were enrolled in this study. Out of 72 patients, 10 patients had decompensated liver with ascites. Quantitative analysis of CPS1 was performed in the harvested sera and corresponding liver biopsies using ELISA and immunohistochemistry techniques respectively. Also, mitochondrial count using electron microscopy, urea analysis and conventional liver tests were done. Patients were grouped into (F1 + F2) and (F3 + F4) representing stages of moderate and severe fibrosis respectively. Tissue and serum CPS1 (s.CPS1) correlated significantly in moderate and severe fibrosis. Patients with severe fibrosis showed significantly higher levels of s.CPS1 (p-value ≤ 0.05) and significantly lower mitochondrial counts (p-value = 0.0065) than those with moderate fibrosis. S.urea positively correlated with s.CPS1 only in the decompensated group, at which s.urea reached maximal levels. In conclusion, s.CPS1 is a potential non-invasive marker for the assessment of severity and progression of HCV in relation to mitochondrial dysfunction. Also, increased s.urea with the progression of the disease is mainly due to a concurrent renal malfunction, which needs further investigation.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/sangue , Hepatite C Crônica/patologia , Cirrose Hepática/patologia , Mitocôndrias/patologia , Adulto , Idoso , Biomarcadores/sangue , Feminino , Hepatite C Crônica/mortalidade , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Prognóstico , Ureia/sangue
13.
Nat Methods ; 16(2): 171-174, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664778

RESUMO

We report an intensiometric, near-infrared fluorescent, genetically encoded calcium ion (Ca2+) indicator (GECI) with excitation and emission maxima at 678 and 704 nm, respectively. This GECI, designated NIR-GECO1, enables imaging of Ca2+ transients in cultured mammalian cells and brain tissue with sensitivity comparable to that of currently available visible-wavelength GECIs. We demonstrate that NIR-GECO1 opens up new vistas for multicolor Ca2+ imaging in combination with other optogenetic indicators and actuators.


Assuntos
Cálcio/química , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Biliverdina/química , DNA/análise , Escherichia coli/química , Feminino , Transferência Ressonante de Energia de Fluorescência , Vetores Genéticos , Células HeLa , Hipocampo/química , Humanos , Íons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Neurônios/química , Optogenética , Domínios Proteicos
14.
Ultrastruct Pathol ; 42(2): 97-107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29424576

RESUMO

Early detection of hepatocellular carcinoma (HCC) is crucial for successful therapy. The present work examined the value of ultrastructural morphometric image analysis of hepatocyte nuclei in patients with chronic hepatitis C virus (HCV) versus HCC cases with chronic HCV and the corresponding surgical tumor-free safe margins (TFMs), to highlight any early predictive signs of neoplastic cellular transformation. This work also performed an immunohistochemical assessment of cytokeratin 19 (CK19) and Ki-67-positive cells to visualize any associated proliferative activity in the examined groups. The results showed significant decrease in the hepatocyte nuclear surface areas in the HCC and TFMs versus those in the HCV cases. The hepatocyte nucleolar surface area was significantly increased in the HCC cases versus that in the HCV cases. This increase was associated with a significant increase in Ki-67-positive cells in the HCC cases compared to those in the other groups. Conversely, the mean number of CK 19-positive cells was significantly reduced in the HCC cases compared to the cell numbers in TFMs and HCV cases with severe hepatic fibrosis. Liver progenitor cells (LPCs) were discerned in the reactive ductules and canaliculo-ductular junctions that characterized TFMs. LPCs were sporadically distributed in the liver lobules and reactive bile ductules in the HCC samples. In conclusion, CK 19 represents an important marker for distinguishing between dysplastic and malignant liver nodules. Electron microscopic morphometric image analysis may be considered as adjunct factor for assessing hepatocyte malignant transformation. Wider scale studies are needed to authenticate these results.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/ultraestrutura , Carcinoma Hepatocelular/virologia , Transformação Celular Neoplásica/ultraestrutura , Hepatite C Crônica/complicações , Hepatite C Crônica/patologia , Humanos , Interpretação de Imagem Assistida por Computador , Imuno-Histoquímica , Queratina-19/análise , Queratina-19/biossíntese , Neoplasias Hepáticas/ultraestrutura , Neoplasias Hepáticas/virologia , Microscopia Eletrônica de Transmissão
15.
ACS Chem Biol ; 13(7): 1832-1837, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29308878

RESUMO

Glutamate is one of the 20 common amino acids and of utmost importance for chemically mediated synaptic transmission in nervous systems. To expand the color palette of genetically encoded indicators for glutamate, we used protein engineering to develop a red intensity-based glutamate-sensing fluorescent reporter (R-iGluSnFR1). Manipulating the topology of R-iGluSnFR1, and a previously reported green fluorescent indicator, led to the development of noncircularly permutated (ncp) variants. R- and Rncp-iGluSnFR1 display glutamate affinities of 11 µM and 0.9 µM, respectively. We demonstrate that these glutamate indicators are functional when targeted to the surface of HEK-293 cells. Furthermore, we show that Gncp-iGluSnFR enabled reliable visualization of extrasynaptic glutamate in organotypic hippocampal slice cultures, while R-iGluSnFR can reliably resolve action potential-evoked glutamate transients by electrical field stimuli in cultures of dissociated hippocampal neurons.


Assuntos
Corantes Fluorescentes/metabolismo , Ácido Glutâmico/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Cor , Células HEK293 , Hipocampo/metabolismo , Humanos , Proteínas Luminescentes/genética , Mutação , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Ratos Sprague-Dawley
16.
BMC Biol ; 16(1): 9, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338710

RESUMO

BACKGROUND: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are indispensable tools for measuring Ca2+ dynamics and neuronal activities in vitro and in vivo. Red fluorescent protein (RFP)-based GECIs have inherent advantages relative to green fluorescent protein-based GECIs due to the longer wavelength light used for excitation. Longer wavelength light is associated with decreased phototoxicity and deeper penetration through tissue. Red GECI can also enable multicolor visualization with blue- or cyan-excitable fluorophores. RESULTS: Here we report the development, structure, and validation of a new RFP-based GECI, K-GECO1, based on a circularly permutated RFP derived from the sea anemone Entacmaea quadricolor. We have characterized the performance of K-GECO1 in cultured HeLa cells, dissociated neurons, stem-cell-derived cardiomyocytes, organotypic brain slices, zebrafish spinal cord in vivo, and mouse brain in vivo. CONCLUSION: K-GECO1 is the archetype of a new lineage of GECIs based on the RFP eqFP578 scaffold. It offers high sensitivity and fast kinetics, similar or better than those of current state-of-the-art indicators, with diminished lysosomal accumulation and minimal blue-light photoactivation. Further refinements of the K-GECO1 lineage could lead to further improved variants with overall performance that exceeds that of the most highly optimized red GECIs.


Assuntos
Cálcio/análise , Substâncias Luminescentes/análise , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Animais , Células Cultivadas , Cristalografia/métodos , Células HeLa , Humanos , Substâncias Luminescentes/química , Proteínas Luminescentes/química , Camundongos , Técnicas de Cultura de Órgãos , Estrutura Secundária de Proteína , Ratos , Anêmonas-do-Mar , Peixe-Zebra , Proteína Vermelha Fluorescente
17.
Ultrastruct Pathol ; 41(3): 209-226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28494215

RESUMO

Hepatitis C virus represents one of the rising causes of hepatocellular carcinoma (HCC). Although the early diagnosis of HCC is vital for successful curative treatment, the majority of lesions are diagnosed in an irredeemable phase. This work deals with a comparative ultrastructural study of experimentally gradually induced HCC, surgically resected HCC, and potential premalignant lesions from HCV-infected patients, with the prospect to detect cellular criteria denoting premalignant transformation. Among the main detected pathological changes which are postulated to precede frank HCC: failure of normal hepatocyte regeneration with star shape clonal fragmentation, frequent elucidation of hepatic progenitor cells and Hering canals, hepatocytes of different electron density loaded with small sized rounded monotonous mitochondria, increase junctional complexes bordering bile canaliculi and in between hepatocyte membranes, abundant cellular proteinaceous material with hypertrophied or vesiculated rough endoplasmic reticulum (RER), sequestrated nucleus with proteinaceous granular material or hypertrophied RER, formation of lipolysosomes, large autophagosomes, and micro-vesicular fat deposition. In conclusion, the present work has visualized new hepatocytic division or regenerative process that mimic splitting or clonal fragmentation that occurs in primitive creature. Also, new observations that may be of value or assist in predicting HCC and identifying the appropriate patient for surveillance have been reported. Moreover, it has pointed to the possible malignant potentiality of liver stem/progenitor cells. For reliability, the results can be subjected to cohort longitudinal study.


Assuntos
Carcinoma Hepatocelular/ultraestrutura , Hepatite C/complicações , Hepatócitos/ultraestrutura , Neoplasias Hepáticas/ultraestrutura , Carcinoma Hepatocelular/virologia , Diagnóstico Diferencial , Feminino , Hepatócitos/virologia , Humanos , Neoplasias Hepáticas/virologia , Masculino , Reprodutibilidade dos Testes , Células-Tronco/ultraestrutura
18.
J Neurosci ; 36(8): 2458-72, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911693

RESUMO

Optical imaging of voltage indicators based on green fluorescent proteins (FPs) or archaerhodopsin has emerged as a powerful approach for detecting the activity of many individual neurons with high spatial and temporal resolution. Relative to green FP-based voltage indicators, a bright red-shifted FP-based voltage indicator has the intrinsic advantages of lower phototoxicity, lower autofluorescent background, and compatibility with blue-light-excitable channelrhodopsins. Here, we report a bright red fluorescent voltage indicator (fluorescent indicator for voltage imaging red; FlicR1) with properties that are comparable to the best available green indicators. To develop FlicR1, we used directed protein evolution and rational engineering to screen libraries of thousands of variants. FlicR1 faithfully reports single action potentials (∼3% ΔF/F) and tracks electrically driven voltage oscillations at 100 Hz in dissociated Sprague Dawley rat hippocampal neurons in single trial recordings. Furthermore, FlicR1 can be easily imaged with wide-field fluorescence microscopy. We demonstrate that FlicR1 can be used in conjunction with a blue-shifted channelrhodopsin for all-optical electrophysiology, although blue light photoactivation of the FlicR1 chromophore presents a challenge for applications that require spatially overlapping yellow and blue excitation.


Assuntos
Corantes Fluorescentes/análise , Hipocampo/química , Hipocampo/fisiologia , Proteínas Luminescentes/análise , Neurônios/química , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Microscopia de Fluorescência/métodos , Técnicas de Cultura de Órgãos/métodos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteína Vermelha Fluorescente
19.
Nat Commun ; 5: 5262, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25358432

RESUMO

The introduction of calcium ion (Ca(2+)) indicators based on red fluorescent proteins (RFPs) has created new opportunities for multicolour visualization of intracellular Ca(2+) dynamics. However, one drawback of these indicators is that they have optimal two-photon excitation outside the near-infrared window (650-1,000 nm) where tissue is most transparent to light. To address this shortcoming, we developed a long Stokes shift RFP-based Ca(2+) indicator, REX-GECO1, with optimal two-photon excitation at <1,000 nm. REX-GECO1 fluoresces at 585 nm when excited at 480 nm or 910 nm by a one- or two-photon process, respectively. We demonstrate that REX-GECO1 can be used as either a ratiometric or intensiometric Ca(2+) indicator in organotypic hippocampal slice cultures (one- and two-photon) and the visual system of albino tadpoles (two-photon). Furthermore, we demonstrate single excitation wavelength two-colour Ca(2+) and glutamate imaging in organotypic cultures.


Assuntos
Cálcio/análise , Proteínas Luminescentes/química , Imagem Óptica , Engenharia de Proteínas , Prótons , Animais , Células HeLa , Humanos , Indicadores e Reagentes , Microscopia Confocal , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Proteína Vermelha Fluorescente
20.
Integr Biol (Camb) ; 6(7): 714-25, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24840546

RESUMO

We demonstrate a simple, low cost and disposable microfluidic fluorescence activated cell sorting system (µFACS) for directed evolution of fluorescent proteins (FP) and FP-based calcium ion (Ca(2+)) indicators. The system was employed to pre-screen libraries of up to 10(6) variants of a yellow FP-based Ca(2+) indicator (Y-GECO) with throughput up to 300 cells per s. Compared to traditional manual screening of FP libraries, this system accelerated the discovery of improved variants and saved considerable time and effort during the directed evolution of Y-GECO. Y-GECO1, the final product of the µFACS-aided directed evolution, has a unique fluorescence hue that places it in the middle of the spectral gap that separates the currently available green and orange FP-based Ca(2+) indicators, exhibits bright fluorescence in the resting (Ca(2+) free) state, and gives a large response to intracellular Ca(2+) fluctuations in live cells.


Assuntos
Cálcio/análise , Evolução Molecular Direcionada/métodos , Proteínas Luminescentes/química , Microfluídica/métodos , Engenharia de Proteínas/métodos , Animais , Sequência de Bases , Feminino , Células HeLa , Hipocampo/química , Humanos , Proteínas Luminescentes/genética , Microfluídica/instrumentação , Microscopia Confocal , Dados de Sequência Molecular , Biblioteca de Peptídeos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...