Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 141949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636918

RESUMO

The disintegration of raw sludge is of importance for enhancing biogas production and facilitates the degradation of substrates for microorganisms so that the efficiency of digestion can be increased. In this study, the effect of hydrodynamic cavitation (HC) as a pretreatment approach for waste activated sludge (WAS) was investigated at two upstream pressures (0.83 and 1.72 MPa) by using a milli-scale apparatus which makes sludge pass through an orifice with a restriction at the cross section of the flow. The HC probe made of polyether ether ketone (PEEK) material was tested using potassium iodide solution and it was made sure that cavitation occurred at the selected pressures. The analysis on chemical effects of HC bubbles collapse suggested that not only cavitation occurred at low upstream pressure, i.e., 0.83 MPa, but it also had high intensity at this pressure. The pretreatment results of HC implementation on WAS were also in agreement with the chemical characterization of HC collapse. Release of soluble organics and ammonium was observed in the treated samples, which proved the efficiency of the HC pretreatment. The methane production was improved during the digestion of the treated samples compared to the control one. The digestion of treated WAS sample at lower upstream pressure (0.83 MPa) resulted in higher methane production (128.4 mL CH4/g VS) compared to the treated sample at higher upstream pressure (119.1 mL CH4/g VS) and control sample (98.3 mL CH4/g VS). Thus, these results showed that the HC pretreatment for WAS led to a significant increase in methane production (up to 30.6%), which reveals the potential of HC in full-scale applications.


Assuntos
Hidrodinâmica , Metano , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Metano/metabolismo , Biocombustíveis/análise , Reatores Biológicos
2.
Sci Total Environ ; 915: 170102, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38228239

RESUMO

The objective of this study is to develop a mechanistic model to predict the long-term dynamic performance of High-Rate Activated Sludge (HRAS) process, including the removal of carbon (COD), nitrogen (N), and phosphorus (P). The model was formulated with inspiration from Activated Sludge Models No. 1 and 3 (ASM1 and ASM3) to incorporate essential mechanisms, such as adsorption and storage substrate, specific to HRAS systems. A stepwise protocol was followed for calibration with dynamic data from a pilot-scale HRAS plant. Sensitivity analysis identified influential model parameters, including maximum specific growth rate (µ), growth yield (YH), storage yield (YSTO), storage rate (kSTO), decay rate (b), and half saturation of the readily biodegradable substrate for growth (KS1). The calibrated model achieved prediction efficiencies above the normalized Mean Absolute Error (MAE) of 70 % for mixed liquor suspended solids (MLSS), total chemical oxygen demand (TCOD), soluble COD (SCOD), particulate COD (XCOD), total nitrogen (TN), ammonia nitrogen (SNH), total phosphorus (TP), soluble TP (STP), and particulate TP (XTP). Uncertainty analysis revealed that SCOD was underestimated. Based on the dynamic profiles of uncertainty bands and observed data, there is potential for improving the estimation of dynamic behavior in STP. The observed discrepancies may be attributed to variations in wastewater characteristics during the monitoring period, particularly concerning the phosphorus (P) fractions of the readily biodegradable substrate (SS) and soluble inerts (SI), which were not considered as dynamically changing parameters in the model.

3.
Sci Total Environ ; 901: 166431, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37598970

RESUMO

Coagulants such as aluminum sulfate (Al2(SO4)3 (alum)) and ferric chloride (FeCl3) used in water treatment plants (WTPs) led to the generation of sludge that is usually disposed to landfills. However, the utilization of WTP sludge is being encouraged by authorities to achieve sustainable development. This study aims to investigate WTP sludge utilization in a pilot-scale high-rate activated sludge (HRAS) system as a substitute for conventional coagulants. Based on jar tests, the iron sludge was selected for pilot-scale testing due to its superior ability to enhance the treatment efficiency of the HRAS process compared to alum sludge. Iron sludge addition (20.1 ± 1.6 mg dry sludge/L wastewater) slightly improved the removal efficiency of particulate chemical oxygen demand (pCOD) from 74 % to 81 % (p-value: 0.014). Iron sludge addition had a distinct effect on the sludge characteristics of the HRAS process. The average median particle size (d50) increased from 96 ± 3 to 163 ± 14 µm (p-value<0.00) with the addition of iron sludge, which improved the settleability of the HRAS process sludge. However, the biochemical methane potential (BMP) of the HRAS process sludge decreased by 8.9 % (p-value<0.00) after iron sludge addition. In a scenario analysis of WTP sludge use in a hypothetical HRAS plant, the effluent quality index (EQI), an indicator of environmental impact, was calculated and the cost related to the operation (the transfer and landfill disposal of WTP and HRAS process sludge, energy and chemical consumption of the HRAS plant) was estimated. As a result, using WTP sludge in the HRAS plant did not significantly affect the EQI of the plant but decreased overall cost by 11 %. The results showed that the use of WTP sludge as a coagulant in wastewater treatment could achieve mutual benefits for WTPs and WWTPs and have the potential to realize the circular economy model.


Assuntos
Esgotos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Ferro , Purificação da Água/métodos
4.
Water Res ; 235: 119920, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003116

RESUMO

Biogas production from anaerobic sludge digestion plays a central role for wastewater treatment plants to become more energy-efficient or even energy-neutral. Dedicated configurations have been developed to maximize the diversion of soluble and suspended organic matter to sludge streams for energy production through anaerobic digestion, such as A-stage treatment or chemically enhanced primary treatment (CEPT) instead of primary clarifiers. Still, it remains to be investigated to what extent these different treatment steps affect the sludge characteristics and digestibility, which may also impact the economic feasibility of the integrated systems. In this study, a detailed characterization has been performed for sludge obtained from primary clarification (primary sludge), A-stage treatment (A-sludge) and CEPT. The characteristics of all sludges differed significantly from each other. The organic compounds in primary sludge consisted mainly of 40% of carbohydrates, 23% of lipids, and 21% of proteins. A-sludge was characterized by a high amount of proteins (40%) and a moderate amount of carbohydrates (23%), and lipids (16%), while in CEPT sludge, organic compounds were mainly 26% of proteins, 18% of carbohydrates, 18% of lignin, and 12% of lipids. The highest methane yield was obtained from anaerobic digestion of primary sludge (347 ± 16 mL CH4/g VS) and A-sludge (333 ± 6 mL CH4/g VS), while it was lower for CEPT sludge (245 ± 5 mL CH4/g VS). Furthermore, an economic evaluation has been carried out for the three systems, considering energy consumption and recovery, as well as effluent quality and chemical costs. Energy consumption of A-stage was the highest among the three configurations due to aeration energy demand, while CEPT had the highest operational costs due to chemical use. Energy surplus was the highest by the use of CEPT, resulting from the highest fraction of recovered organic matter. By considering the effluent quality of the three systems, CEPT had the highest benefits, followed by A-stage. Integration of CEPT or A-stage, instead of primary clarification in existing wastewater treatment plants, would potentially improve the effluent quality and energy recovery.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Metano/metabolismo , Carboidratos , Lipídeos , Reatores Biológicos , Anaerobiose
5.
Chemosphere ; 302: 134930, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35568222

RESUMO

The use of nanomaterials (NMs) in the fabrication and modification of membranes as well as the coupling of nanomaterial-based processes with membrane processes have been attracted many researchers today. The NMs due to a wide range of types, different chemistry, the possibility of various kinds of functionality, different properties like antibacterial activity, hydrophilicity, and large surface area were applied to enhance the membrane properties. In the membrane bioreactors (MBRs) as a highly successful process of membrane technology in wastewater treatment, the NMs have been applied for improving the efficiency of MBR process. This review assessed the application of NMs both as the modifiers of membrane and as the effective part of hybrid techniques with MBR system for wastewater treatment. The efficiency of NMs blended membranes in the MBR process has been reviewed in terms of antifouling and antibacterial improvement and removal performance of the pollutants. Novel kinds of NMs were recognized and discussed based on their properties and advantages. The NMs-based photocatalytic and electrochemical processes integrated with MBR were reviewed with their benefits and drawbacks. In addition, the effect of the presence of mobilized NPs in the sludge on MBR performance was surveyed. As a result of this review, it can be concluded that nanomaterials generally improve MBR performance. The high flux and antifouling properties can be obtained by adding nanomaterials with hydrophilic and antibacterial properties to the membrane, and further studies are required for photocatalytic NMs applications. In addition, this review shows that the low amounts of NMs in the membrane structure could have an effective influence on the MBR process. Besides, since many studies in the literature are carried out at the laboratory scale, it is thought that pilot and real-scale studies should be carried out to obtain more reliable data.


Assuntos
Nanoestruturas , Eliminação de Resíduos Líquidos , Antibacterianos/farmacologia , Reatores Biológicos , Membranas Artificiais , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
6.
J Environ Manage ; 303: 114233, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875566

RESUMO

In this study, fate of micropollutants was investigated in a membrane bioreactor (MBR) having dynamic membrane (DM) and ultrafiltration (UF) membrane for the treatment of raw municipal wastewater. Removal efficiencies of different micropollutants including sulfamethoxazole, ciprofloxacin, trimethoprim, caffeine and acetaminophen were assessed. A commercial hollow fiber UF membrane was used in parallel with a DM that was formed on a low-cost hollow fiber support material, made of polyester. MBR was operated at a flux of 10 L/m2·h. High total suspended solids (>99%) and chemical oxygen demand (>91%) removal efficiencies were achieved with each membrane. Besides, high removal efficiencies of micropollutants (>68.3->99.7%) were achieved. Morphological analyses were conducted for each membrane in order to get insight to the cake (dynamic) layer that was accumulated on the membrane. DM technology provides an effective alternative to the conventional membrane systems for micropollutant removal from municipal wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Reatores Biológicos , Membranas Artificiais , Ultrafiltração , Eliminação de Resíduos Líquidos
7.
Environ Sci Pollut Res Int ; 26(32): 32723-32733, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30847818

RESUMO

This study investigated the applicability of self-forming hollow fiber dynamic membrane (DM) as a low-cost alternative to ultrafiltration (UF) membrane. A hollow fiber polyester fabric was used as a support material to form the DM layer. Submerged DM and UF hollow fiber membrane were placed in the same reactor in order to compare the treatment and filtration performance of each membrane. Morphological analyses were also carried out for DM surface. The system was operated continuously at a flux of 5 L/m2 h for 85 days. High COD removal efficiency and total suspended solids (TSS) rejection were achieved by the DM. Transmembrane pressure (TMP) of the DM was higher in comparison to the UF membrane, which was related with the formation of cake layer in DM. DM technology can be used as an alternative to UF membrane for municipal wastewater treatment.


Assuntos
Membranas Artificiais , Eliminação de Resíduos Líquidos , Reatores Biológicos , Filtração , Ultrafiltração , Águas Residuárias , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...