Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Heliyon ; 10(7): e28512, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590895

RESUMO

Magnetic Resonance Imaging (MRI) is increasingly becoming a cornerstone in modern diagnostic healthcare, offering unparalleled capabilities in stroke, dementia, and cancer screening. Therefore, this study aims to map medical MRI literature affiliated with Arab countries, focusing on publication trends, top journals, author affiliations, study countries, and authors' collaboration, and keyword analysis. The scientific database used is the Scopus database. Microsoft Excel, VOSviewer software, and Biblioshiny for the Bibliometrix R package are the bibliometric tools used in this analysis. A total of 2592 publications were published between 1988 and 2022, with total citations of 22,115. Most of them were original articles (91,7%) and 89.9% were published in traditional journals. The number of total publications exhibited a steady increase over time, whereas total citations showed fluctuations, peaking in 2015 with 1571 citations for publications from that year. The most cited article was authored by Yaseen M. Arabi, receiving 286 citations. Saudi Arabia was the top active country. In addition, the most prolific author was Maha S Zaki, and the most prolific source was the "Egyptian Journal of Radiology and Nuclear Medicine". The most prolific affiliation was Cairo University. The "multiple sclerosis" and "case report" were the most trending keywords. The analysis revealed a significant growth in MRI research inside Arab countries, as shown by an increase in the total number of publications and international collaborations. Despite these developments, the results of this study suggest that there is still room for MRI research in the Arab region to advance. This can be achieved through increasing international collaboration and multidisciplinary work.

2.
Plant Physiol Biochem ; 207: 108362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266561

RESUMO

Nodule symbiosis is an energetic process that demands a tremendous carbon (C) cost, which massively increases in responses to environmental stresses. Notably, most common respiratory pathways (e.g., glycolysis and Krebs cycle) that sustain nitrogenase activity and subsequent nitrogen (N) assimilation (amino acid formation) display a noncyclic mode of C flux. In such circumstances, the nodule's energy charge could markedly decrease, leading to a lower symbiotic activity under stresses. The host plant then attempts to induce alternative robust metabolic pathways to minimize the C expenditure and compensate for the loss in respiratory substrates. GABA (γ-aminobutyric acid) shunt appears to be among the highly conserved metabolic bypass induced in responses to stresses. Thus, it can be suggested that GABA, via its primary biosynthetic pathway (GABA shunt), is simultaneously induced to circumvent stress-susceptible decarboxylating portion of the Krebs cycle and to replenish symbiosome with energy and C skeletons for enhancing nitrogenase activity and N assimilation besides the additional C costs expended in the metabolic stress acclimations (e.g., biosynthesis of secondary metabolites and excretion of anions). The GABA-mediated C/N balance is strongly associated with interrelated processes, including pH regulation, oxygen (O2) protection, osmoregulation, cellular redox control, and N storage. Furthermore, it has been anticipated that GABA could be implicated in other functions beyond its metabolic role (i.e., signaling and transport). GABA helps plants possess remarkable metabolic plasticity, which might thus assist nodules in attenuating stressful events.


Assuntos
Fabaceae , Fabaceae/metabolismo , Simbiose/fisiologia , Nitrogênio/metabolismo , Carbono/metabolismo , Ácido gama-Aminobutírico/metabolismo , Verduras , Plantas/metabolismo , Homeostase , Nitrogenase/metabolismo , Fixação de Nitrogênio/fisiologia , Nódulos Radiculares de Plantas
3.
Plant Physiol Biochem ; 206: 108193, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029615

RESUMO

In the aftermaths of global warming, plants are more frequently exposed to the combination of heat stress and drought in natural conditions. Jasmonic acid (JA) has been known to modulate numerous plant adaptive responses to diverse environmental stresses. However, the function of JA in regulating plant responses to the combined effects of heat and drought remains underexplored. In this study, we elucidated the functions of JA in enhancing the combined heat and drought tolerance of soybean (Glycine max). Our results showed that priming with JA improved plant biomass, photosynthetic efficiency and leaf relative water content, which all together contributed to the improved performance of soybean plants under single and combined heat and drought conditions. Exposure to single and combined heat and drought conditions caused oxidative damage in soybean leaves. Priming soybean plants, which were exposed to single and combined heat and drought conditions, with JA, on the other hand, substantially quenched the reactive oxygen species-induced oxidative burden possibly by bolstering their antioxidant defense system. Together, our findings provide direct evidence of the JA-mediated protective mechanisms in maintaining the optimal photosynthetic rate and plant performance under combined heat and drought conditions.


Assuntos
Antioxidantes , Ciclopentanos , Glycine max , Oxilipinas , Antioxidantes/metabolismo , Secas , Fotossíntese
4.
Plants (Basel) ; 12(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896063

RESUMO

Rice (Oryza sativa) is a major crop and a main food for a major part of the global population. Rice species have derived from divergent agro-climatic regions, and thus, the local germplasm has a large genetic diversity. This study investigated the relationship between phenotypic and genetic variabilities of yield and yield-associated traits in Aus rice to identify short-duration, high-yielding genotypes. Targeting this issue, a field experiment was carried out to evaluate the performance of 51 Aus rice genotypes, including 50 accessions in F5 generation and one short-duration check variety BINAdhan-19. The genotypes exhibited a large and significant variation in yield and its associated traits, as evidenced by a wide range of their coefficient of variance. The investigated traits, including days to maturity (DM), plant height (PH), panicle length (PL) and 1000-grain weight (TW) exhibited a greater genotypic coefficient of variation than the environmental coefficient of variation. In addition, the high broad-sense heritability of DM, PH, PL and TW traits suggests that the genetic factors significantly influence the observed variations in these traits among the F5 Aus rice accessions. This study also revealed that the grain yield per hill (GY) displayed a significant positive correlation with PL, number of filled grains per panicle (FG) and TW at both genotype and phenotype levels. According to the hierarchical and K-means cluster analyses, the accessions BU-R-ACC-02, BU-R-ACC-08 and R2-36-3-1-1 have shorter DM and relatively higher GY than other Aus rice accessions. These three accessions could be employed in the ongoing and future breeding programs for the improvement of short-duration and high-yielding rice cultivars.

5.
Environ Res ; 237(Pt 2): 117017, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652220

RESUMO

In recent times, the herbicide atrazine (ATZ) has been commonly used before and after the cultivation of crop plants to manage grassy weeds. Despite its effect, the toxic residues of ATZ affect soil fertility and crop yield. Hence, the current study is focused on providing insight into the degradation mechanism of the herbicide atrazine through bacterial chemotaxis involving intermediates responsive to degradation. A bacterium was isolated from ATZ-contaminated soil and identified as Pseudomonas stutzeri based on its morphology, biochemical and molecular characterization. Upon ultra-performance liquid chromatography analysis, the free cells of isolated bacterium strain was found to utilize 174 µg/L of ATZ after 3-days of incubation on a mineral salt medium containing 200 µg/L of ATZ as a sole carbon source. It was observed that immobilized based degradation of ATZ yielded 198 µg/L and 190 µg/L by the cells entrapped with silica beads and sponge, respectively. Furthermore, the liquid chromatography-mass spectroscopy revealed that the secretion of three significant metabolites, namely, cyanuric acid, hydroxyatrazine and N- N-Isopropylammelide is responsive to the biodegradation of ATZ by the bacterium. Collectively, this research demonstrated that bacterium strains are the most potent agent for removing toxic pollutants from the environment, thereby enhancing crop yield and soil fertility with long-term environmental benefits.

6.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513950

RESUMO

A small set of indole-based derivatives, IV and Va-I, was designed and synthesized. Compounds Va-i demonstrated promising antiproliferative activity, with GI50 values ranging from 26 nM to 86 nM compared to erlotinib's 33 nM. The most potent antiproliferative derivatives-Va, Ve, Vf, Vg, and Vh-were tested for EGFR inhibitory activity. Compound Va demonstrated the highest inhibitory activity against EGFR with an IC50 value of 71 ± 06 nM, which is higher than the reference erlotinib (IC50 = 80 ± 05 nM). Compounds Va, Ve, Vf, Vg, and Vh were further tested for BRAFV600E inhibitory activity. The tested compounds inhibited BRAFV600E with IC50 values ranging from 77 nM to 107 nM compared to erlotinib's IC50 value of 60 nM. The inhibitory activity of compounds Va, Ve, Vf, Vg, and Vh against VEGFR-2 was also determined. Finally, in silico docking experiments attempted to investigate the binding mode of compounds within the active sites of EGFR, BRAFV600E, and VEGFR-2.

7.
J Enzyme Inhib Med Chem ; 38(1): 2218602, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37254958

RESUMO

A new series of indole-2-carboxamides 5a-g, 6a-f and pyrido[3,4-b]indol-1-ones 7a and 7b have been developed as new antiproliferative agents that target both wild and mutant type EGFR. The antiproliferative effect of the new compounds was studied. 5c, 5d, 5f, 5 g, 6e, and 6f have the highest antiproliferative activity with GI50 values ranging from 29 nM to 47 nM in comparison to the reference erlotinib (GI50 = 33 nM). Compounds 5d, 5f, and 5 g inhibited EGFRWT with IC50 values ranging from 68 to 85 nM while the GI50 of erlotinib is 80 nM. Moreover, compounds 5f and 5 g had the most potent inhibitory activity against EGFRT790M with IC50 values of 9.5 ± 2 and 11.9 ± 3 nM, respectively, being equivalent to the reference osimertinib (IC50 = 8 ± 2 nM). Compounds 5f and 5 g demonstrated excellent caspase-3 protein overexpression levels of 560.2 ± 5.0 and 542.5 ± 5.0 pg/mL, respectively, being more active than the reference staurosporine (503.2 ± 4.0 pg/mL). they also increase the level of caspase 8, and Bax while decreasing the levels of anti-apoptotic Bcl2 protein. Computational docking studies supported the enzyme inhibition results and provided favourable dual binding modes for both compounds 5f and 5 g within EGFRWT and EGFRT790M active sites. Finally, in silico ADME/pharmacokinetic studies predict good safety and pharmacokinetic profile of the most active compounds.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Antineoplásicos/química , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Mutação , Neoplasias Pulmonares/tratamento farmacológico , Estaurosporina/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Estrutura Molecular
8.
RSC Med Chem ; 14(4): 734-744, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122549

RESUMO

A new series of 5-substituted-3-ethylindole-2-carboxamides 5a-k and 6a-c was designed and synthesised in an attempt to develop a dual targeted antiproliferative agent. Various spectroscopic methods of analysis were used to confirm the structures of the new compounds. The antiproliferative effect of compounds 5a-k and 6a-c against four cancer cell lines was investigated. Compounds 5a-k and 6a-c had significant antiproliferative activity against the four cancer cell lines tested, with mean GI50 values ranging from 37 nM to 193 nM. The most powerful derivatives were compounds 5g, 5i, and 5j, with GI50 values of 55 nM, 49 nM, and 37 nM, respectively, in comparison to the reference erlotinib, which had a GI50 of 33 nM. The four most potent compounds, 5c, 5g, 5i, and 5j, were then investigated for their efficacy as EGFR inhibitors, and the findings showed that the tested compounds inhibited EGFR with IC50 values ranging from 85 nM to 124 nM when compared to the reference erlotinib (IC50 = 80 nM). Moreover, compounds 5c and 5g inhibited CDK2 with IC50 values of 46 ± 05 nM and 33 ± 04 nM, respectively. The EGFR and CDK2 assays revealed that compounds 5i and 5j displayed potent antiproliferative activity and can be considered as potential dual EGFR and CDK2 inhibitors.

9.
Plant Physiol Biochem ; 196: 952-964, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36889234

RESUMO

Drought is one of the major environmental stresses that impairs fruit productivity and quality. The proper management of minerals can, however, assist plant to maintain their growth even under drought incidents, and is considered one of the encouraging approaches to refine the drought tolerance of plants. The beneficial effects of chitosan (CH)-based Schiff base-metal complexes (e.g., CH-Fe, CH-Cu and CH-Zn) in reducing the harmful impacts of different levels of drought stress on the growth and productivity of 'Malase Saveh' pomegranate cultivar were examined. All CH-metal complexes displayed favorable effects on the yield- and growth-related attributes of pomegranate trees cultivated under well-watered and different drought situations, with the best effects were observed with CH-Fe application. Specifically, leaves of CH-Fe-treated pomegranate plants showed higher concentrations of photosynthetic pigments [chlorophyll a (Chl a), Chl b, Chl a+b, and carotenoids by 28.0, 29.5, 28.6 and 85.7%, respectively] and microelements (Fe by 27.3%), along with increased levels of superoxide dismutase (by 35.3%) and ascorbate peroxidase (by 56.0%) enzymatic activities relative to those of CH-Fe-non-treated pomegranate plants under intense drought stress. CH-Fe-treated drought-stressed pomegranate leaves showed high increment of abscisic acid (by 25.1%) and indole-3-acetic acid (by 40.5%) relative to CH-Fe-non-treated pomegranates. The increased contents of total phenolics, ascorbic acid, total anthocyanins, and titratable acidity (by 24.3, 25.8, 9.3 and 30.9%, respectively) in the fruits of CH-Fe-treated drought-stressed pomegranates indicated the advantageousness of CH-Fe on the enhancement of fruit nutritional qualities. Collectively, our results prove the explicit functions of these complexes, particularly CH-Fe, in the control of drought-induced negative effects on pomegranate trees grown in semi-arid and dry areas.


Assuntos
Quitosana , Complexos de Coordenação , Punica granatum , Clorofila A , Frutas , Quitosana/farmacologia , Secas , Antocianinas , Bases de Schiff , Metais , Zinco
11.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770936

RESUMO

Mutant EGFR/BRAF pathways are thought to be crucial targets for the development of anticancer drugs since they are over-activated in several malignancies. We present here the development of a novel series of 5-chloro-indole-2-carboxylate 3a-e, 4a-c and pyrrolo[3,4-b]indol-3-ones 5a-c derivatives as potent inhibitors of mutant EGFR/BRAF pathways with antiproliferative activity. The cell viability assay results of 3a-e, 4a-c, and 5a-c revealed that none of the compounds tested were cytotoxic, and that the majority of those tested at 50 µM had cell viability levels greater than 87%. Compounds 3a-e, 4a-c, and 5a-c had significant antiproliferative activity with GI50 values ranging from 29 nM to 78 nM, with 3a-e outperforming 4a-c and 5a-c in their inhibitory actions against the tested cancer cell lines. Compounds 3a-e were tested for EGFR inhibition, with IC50 values ranging from 68 nM to 89 nM. The most potent derivative was found to be the m-piperidinyl derivative 3e (R = m-piperidin-1-yl), with an IC50 value of 68 nM, which was 1.2-fold more potent than erlotinib (IC50 = 80 nM). Interestingly, all the tested compounds 3a-e had higher anti-BRAFV600E activity than the reference erlotinib but were less potent than vemurafenib, with compound 3e having the most potent activity. Moreover, compounds 3b and 3e showed an 8-fold selectivity index toward EGFRT790M protein over wild-type. Additionally, molecular docking of 3a and 3b against BRAFV600E and EGFRT790M enzymes revealed high binding affinity and active site interactions compared to the co-crystalized ligands. The pharmacokinetics properties (ADME) of 3a-e revealed safety and good pharmacokinetic profile.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Receptores ErbB/metabolismo , Proliferação de Células , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Cloridrato de Erlotinib/farmacologia , Inibidores de Proteínas Quinases/química , Mutação , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular , Proteínas Proto-Oncogênicas B-raf
12.
Plant Cell Physiol ; 63(12): 1914-1926, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35880749

RESUMO

In this study, we investigated the potential role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seedlings to high-temperature stress. We performed phenotypic, physiological and transcriptome analyses of Arabidopsis kai2 mutants and wild-type (WT) plants under control (kai2_C and WT_C, respectively) and 6- and 24-h heat stress conditions (kai2_H6, kai2_H24, WT_H6 and WT_H24, respectively) to understand the basis for KAI2-regulated heat stress tolerance. We discovered that the kai2 mutants exhibited hypersensitivity to high-temperature stress relative to WT plants, which might be associated with a more highly increased leaf surface temperature and cell membrane damage in kai2 mutant plants. Next, we performed comparative transcriptome analysis of kai2_C, kai2_H6, kai2_H24, WT_C, WT_H6 and WT_H24 to identify transcriptome differences between WT and kai2 mutants in response to heat stress. K-mean clustering of normalized gene expression separated the investigated genotypes into three clusters based on heat-treated and non-treated control conditions. Within each cluster, the kai2 mutants were separated from WT plants, implying that kai2 mutants exhibited distinct transcriptome profiles relative to WT plants. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed a repression in 'misfolded protein binding', 'heat shock protein binding', 'unfolded protein binding' and 'protein processing in endoplasmic reticulum' pathways, which was consistent with the downregulation of several genes encoding heat shock proteins and heat shock transcription factors in the kai2 mutant versus WT plants under control and heat stress conditions. Our findings suggest that chemical or genetic manipulation of KAI2 signaling may provide a novel way to improve heat tolerance in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Termotolerância , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Plant Cell Physiol ; 63(12): 1900-1913, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681253

RESUMO

Recent investigations in Arabidopsis thaliana suggest that SUPPRESSOR of MORE AXILLARY GROWTH 2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) are negative regulators of karrikin (KAR) and strigolactone (SL) signaling during plant growth and development, but their functions in drought resistance and related mechanisms of action remain unclear. To understand the roles and mechanisms of SMAX1 and SMXL2 in drought resistance, we investigated the drought-resistance phenotypes and transcriptome profiles of smax1 smxl2 (s1,2) double-mutant plants in response to drought stress. The s1,2 mutant plants showed enhanced drought-resistance and lower leaf water loss when compared with wild-type (WT) plants. Transcriptome comparison of rosette leaves from the s1,2 mutant and the WT under normal and dehydration conditions suggested that the mechanism related to cuticle formation was involved in drought resistance. This possibility was supported by enhanced cuticle formation in the rosette leaves of the s1,2 mutant. We also found that the s1,2 mutant plants were more sensitive to abscisic acid in assays of stomatal closure, cotyledon opening, chlorophyll degradation and growth inhibition, and they showed a higher reactive oxygen species detoxification capacity than WT plants. In addition, the s1,2 mutant plants had longer root hairs and a higher root-to-shoot ratio than the WT plants, suggesting that the mutant had a greater capacity for water absorption than the WT. Taken together, our results indicate that SMAX1 and SMXL2 negatively regulate drought resistance, and disruption of these KAR- and SL-signaling-related genes may therefore provide a novel means for improving crop drought resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistência à Seca , Germinação/genética , Ácido Abscísico/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
14.
Plant Cell Physiol ; 63(12): 1927-1942, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35997763

RESUMO

Plants activate a myriad of signaling cascades to tailor adaptive responses under environmental stresses, such as salinity. While the roles of exogenous karrikins (KARs) in salt stress mitigation are well comprehended, genetic evidence of KAR signaling during salinity responses in plants remains unresolved. Here, we explore the functions of the possible KAR receptor KARRIKIN-INSENSITIVE2 (KAI2) in Arabidopsis thaliana tolerance to salt stress by investigating comparative responses of wild-type (WT) and kai2-mutant plants under a gradient of NaCl. Defects in KAI2 functions resulted in delayed and inhibited cotyledon opening in kai2 seeds compared with WT seeds, suggesting that KAI2 played an important role in enhancing seed germination under salinity. Salt-stressed kai2 plants displayed more phenotypic aberrations, biomass reduction, water loss and oxidative damage than WT plants. kai2 shoots accumulated significantly more Na+ and thus had a lower K+/Na+ ratio, than WT, indicating severe ion toxicity in salt-stressed kai2 plants. Accordingly, kai2 plants displayed a lower expression of genes associated with Na+ homeostasis, such as SALT OVERLY SENSITIVE (SOS) 1, SOS2, HIGH-AFFINITY POTASSIUM TRANSPORTER 1;1 (HKT1;1) and CATION-HYDROGEN EXCHANGER 1 (NHX1) than WT plants. WT plants maintained a better glutathione level, glutathione-related redox status and antioxidant enzyme activities relative to kai2 plants, implying KAI2's function in oxidative stress mitigation in response to salinity. kai2 shoots had lower expression levels of genes involved in the biosynthesis of strigolactones (SLs), salicylic acid and jasmonic acid and the signaling of abscisic acid and SLs than those of WT plants, indicating interactive functions of KAI2 signaling with other hormone signaling in modulating plant responses to salinity. Collectively, these results underpin the likely roles of KAI2 in the alleviation of salinity effects in plants by regulating several physiological and biochemical mechanisms involved in ionic and osmotic balance, oxidative stress tolerance and hormonal crosstalk.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tolerância ao Sal/genética , Proteínas de Transporte/metabolismo , Glutationa/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Metabolites ; 12(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36557300

RESUMO

In this study, targeted metabolome analysis was applied to identify the discriminative metabolites between Indonesian shallot landraces, Japanese long-day onion (LDO) varieties, and Japanese short-day onion (SDO) varieties. In total, 172 metabolite signal intensities were subjected to multivariate PLS-DA, VIP, and random forest modeling to gain further insight into genotype-specific metabolites. PLS-DA divides the examined genotypes into three different clusters, implying that shallot landraces exhibited a distinct metabolite profile compared with Japanese LDO and SDO varieties. The PLS-DA, VIP, and random forest results indicated that the shallot and LDO are richer in metabolite constituents in comparison with the SDO. Specifically, amino acids and organosulfur compounds were the key characteristic metabolites in shallot and LDO genotypes. The analysis of S-alk(en)yl-L-cysteine sulfoxide (ACSO) compounds showed higher accumulation in the shallot landraces relative to LDO and SDO varieties, which explains the stronger pungency and odor in shallots. In addition, the LDO showed higher ACSO content compared with the SDO, implying that long-day cultivation might enhance sulfur assimilation in the Japanese onion. The LDO 'Super Kitamomiji' and the shallots 'Probolinggo' and 'Thailand' showed higher ACSO content than other varieties, making it useful for Allium breeding to improve the flavor and stress tolerance of onions.

16.
Bioorg Med Chem ; 73: 117004, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148773

RESUMO

A series of ciprofloxacin-uracil conjugates 5a-t were synthesized and identified by 1H NMR, 13C NMR, mass spectroscopy and elemental analyses. The antibacterial results revealed that the new derivatives exhibited better activity against Gram-positive than the Gram-negative strains; most of the target compounds exhibited good activities against S. aureus ATCC 6538. Compounds 5b and 5g possess the highest activities with MICs of 1.25 and 2.37 µM, respectively, which are more potent than the parent drug ciprofloxacin, MIC, 7.58 µM. In addition, they also exhibited potent activities against MRSA AUMC 261 with MICs, 0.031 and 0.046 µM respectively, higher than ciprofloxacin with MIC, 0.57 µM. Moreover, compounds 5b and 5g showed potent inhibitory activities against DNA gyrase (IC50 = 1.72 and 5.72 µM) and topoisomerase IV (4.36 and 7.77 µM) compared to ciprofloxacin with IC50 values 0.66 and 8.16 µM, respectively. The molecular docking study revealed that compounds 5b and 5g may formed stable interaction with the active sites of DNA gyrase and topoisomerase IV similar to ciprofloxacin. Hence, 5b and 5g are considered promising antibacterial candidated against MRSA AUMC 261 strains that requires further optimization.


Assuntos
DNA Girase , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , DNA Girase/genética , DNA Topoisomerase IV , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Uracila
18.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015154

RESUMO

The apoptotic antiproliferative actions of our previously reported CB1 allosteric modulators 5-chlorobenzofuran-2-carboxamide derivatives VIIa-j prompted us to develop and synthesise a novel series of indole-2-carboxamide derivatives 5a-k, 6a-c, and 7. Different spectroscopic methods of analysis were used to validate the novel compounds. Using the MTT assay method, the novel compounds were examined for antiproliferative activity against four distinct cancer cell lines. Compounds 5a-k, 6a-c, and 7 demonstrated greater antiproliferative activity against the breast cancer cell line (MCF-7) than other tested cancer cell lines, and 5a-k (which contain the phenethyl moiety in their backbone structure) demonstrated greater potency than 6a-c and 7, indicating the importance of the phenethyl moiety for antiproliferative action. Compared to reference doxorubicin (GI50 = 1.10 µM), compounds 5d, 5e, 5h, 5i, 5j, and 5k were the most effective of the synthesised derivatives, with GI50 ranging from 0.95 µM to 1.50 µM. Compounds 5d, 5e, 5h, 5i, 5j, and 5k were tested for their inhibitory impact on EGFR and CDK2, and the results indicated that the compounds tested had strong antiproliferative activity and are effective at suppressing both CDK2 and EGFR. Moreover, the studied compounds induced apoptosis with high potency, as evidenced by their effects on apoptotic markers such as Caspases 3, 8, 9, Cytochrome C, Bax, Bcl2, and p53.

19.
World J Hepatol ; 14(6): 1150-1161, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35978667

RESUMO

BACKGROUND: Patients who undergo living donor liver transplantation (LDLT) may suffer complications that require intensive care unit (ICU) readmission. AIM: To identify the incidence, causes, and outcomes of ICU readmission after LDLT. METHODS: A retrospective cohort study was conducted on patients who underwent LDLT. The collected data included patient demographics, preoperative characteristics, intraoperative details; postoperative stay, complications, causes of ICU readmission, and outcomes. Patients were divided into two groups according to ICU readmission after hospital discharge. Risk factors for ICU readmission were identified in univariate and multivariate analyses. RESULTS: The present study included 299 patients. Thirty-one (10.4%) patients were readmitted to the ICU after discharge. Patients who were readmitted to the ICU were older in age (53.0 ± 5.1 vs 49.4 ± 8.8, P = 0.001) and had a significantly higher percentage of women (29% vs 13.4%, P = 0.032), diabetics (41.9% vs 24.6%, P = 0.039), hypertensives (22.6% vs 6.3%, P = 0.006), and renal (6.5% vs 0%, P = 0.010) patients as well as a significantly longer initial ICU stay (6 vs 4 d, respectively, P < 0.001). Logistic regression analysis revealed that significant independent risk factors for ICU readmission included recipient age (OR = 1.048, 95%CI = 1.005-1.094, P = 0.030) and length of initial hospital stay (OR = 0.836, 95%CI = 0.789-0.885, P < 0.001). CONCLUSION: The identification of high-risk patients (older age and shorter initial hospital stay) before ICU discharge may help provide optimal care and tailor follow-up to reduce the rate of ICU readmission.

20.
Int J Biol Macromol ; 220: 223-237, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35970370

RESUMO

The present study evaluated the priming efficacy of chitosan and chitosan-derived nanoparticles (CNPs) against bacterial wilt of tomato. In the current study, seed-treated CNPs plus pathogen-inoculated tomato seedlings recorded significant protection of 62 % against pathogen-induced wilt disease and subsequently better growth. The induced resistance was witnessed by a prominent increase in lignin, callose and H2O2 deposition, followed by superoxide radical accumulation in leaves. Additionally, chitosan and CNPs-treated tomato plants recorded a remarkable increase in the upregulation of phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), catalase (CAT) and ß-1, 3 glucanase (GLU) in comparison with untreated plants. The chitosan and CNPs-induced antioxidant enzymes were positively correlated with the stimulation of corresponding gene expression in CNPs treated plants related to pathogen-inoculated ones. The results of this study describe that how the application of chitosan and CNPs elicit defense responses at the cellular, biochemical and gene expression in tomato plants against bacterial wilt disease, thereby improve growth and yield.


Assuntos
Quitosana , Nanopartículas , Solanum lycopersicum , Antioxidantes/metabolismo , Catalase/genética , Catalase/metabolismo , Catecol Oxidase/metabolismo , Quitosana/metabolismo , Quitosana/farmacologia , Peróxido de Hidrogênio/metabolismo , Imunidade , Lignina/metabolismo , Solanum lycopersicum/microbiologia , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/microbiologia , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...