Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
3 Biotech ; 14(6): 161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799268

RESUMO

This study evaluated Streptomyces rochei strain NAM-19 solid-state fermentation of agricultural wastes to produce alkaline protease. Alkaline protease production increased with flaxseed, rice bran, and cheese whey fermentation reaching 147 U/mL at 48 h. Statistical optimization of alkaline protease production was performed using the central composite design (CDD). Results of CDD and the optimization plot showed that 4.59 g/L flaxseed, 4.31 g/L rice bran, 4.17 mL cheese whey, and a vegetative inoculum size of 7.0% increased alkaline protease production by 27.2% reaching 186 U/mL. Using the 20-70% ammonium sulfate fractionation method, the optimally produced enzyme was partially purified to fivefold. The partially purified alkaline protease was then covalently immobilized on a biopolymer carrier, glutaraldehyde-polyethylene-imine-κ-carrageenan (GA-PEI-Carr), with 90% immobilization efficiency. Characterizations revealed that immobilization improved thermostability, reusability, optimum temperature, and sensitivity towards metal ions of the free enzyme. The optimal temperature for free and immobilized enzymes was 40 and 50 °C, respectively. Both enzymes had the same optimum pH of 10. Immobilization increased Km from 19.73 to 26.52 mM and Vmax from 56.7 to 62.5 mmol min-1L-1. The immobilized enzyme retained 35% of its initial activity at 70 °C, while the free enzyme retained only 5%. The immobilized enzyme kept 80% of its initial activity at the 20th cycle. After 7 weeks of storage, the free enzyme lost all its initial activity, whereas the immobilized enzyme retained 50%. The free and immobilized enzymes were able to hydrolyze gelatin, and azo-casein demonstrating different relative activity, 85, 80, 90 and 95%, respectively, compared to casein (100%).

2.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298777

RESUMO

Chenopodium murale (Syn. Chenopodiastrum murale) (amaranthaceae) is used in the rural Egypt to treat oral ulcers in newborn children. The current study aimed to discover new natural products suitable for treating candidiasis disease with minimal side effects. Characterization of bioactive compounds by LC-QTOF-HR-MS/MS from Chenopodium murale fresh leaves' juice (CMJ) was carried out in order to elucidate their potential anti-fungal and immunomodulatory effects in oral candidiasis in immunosuppressed rats. An oral ulcer candidiasis model was created in three stages: (i) immunosuppression by drinking dexamethasone (0.5 mg/L) for two weeks; (ii) Candida albicans infection (3.00 × 106 viable cell/mL) for one week; and (iii) treatment with CMJ (0.5 and 1.0 g/kg orally) or nystatin (1,000,000 U/L orally) for one week. Two doses of CMJ exhibited antifungal effects, for example, through a significant reduction in CFU/Petri (236.67 ± 37.86 and 4.33 ± 0.58 CFU/Petri), compared to the Candida control (5.86 × 104 ± 1.21 CFU/Petri), p ≤ 0.001. In addition, CMJ significantly induced neutrophil production (32.92% ± 1.29 and 35.68% ± 1.77) compared to the Candida control level of 26.50% ± 2.44. An immunomodulatory effect of CMJ at two doses appeared, with a considerable elevation in INF-γ (103.88 and 115.91%), IL-2 (143.50, 182.33%), and IL-17 (83.97 and 141.95% Pg/mL) compared with the Candida group. LC-MS/MS analysis operated in negative mode was used for tentative identification of secondary (SM) metabolites based on their retention times and fragment ions. A total of 42 phytoconstituents were tentatively identified. Finally, CMJ exhibited a potent antifungal effect. CMJ fought Candida through four strategies: (i) promotion of classical phagocytosis of neutrophils; (ii) activation of T cells that activate IFN-γ, IL-2, and IL-17; (iii) increasing the production of cytotoxic NO and H2O2 that can kill Candida; and (iv) activation of SOD, which converts superoxide to antimicrobial materials. These activities could be due to its active constituents, which are documented as anti-fungal, or due to its richness in flavonoids, especially the active compounds of kaempferol glycosides and aglycone, which have been documented as antifungal. After repetition on another type of small experimental animal, their offspring, and an experimental large animal, this study may lead to clinical trials.


Assuntos
Candidíase Bucal , Candidíase , Chenopodium , Ratos , Animais , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Antifúngicos/uso terapêutico , Interleucina-17 , Candida albicans , Cromatografia Líquida , Peróxido de Hidrogênio/farmacologia , Interleucina-2/farmacologia , Espectrometria de Massas em Tandem , Candidíase/tratamento farmacológico , Candida
3.
Int J Biol Macromol ; 233: 123655, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780965

RESUMO

Long-term topical application of antibiotics on wounds has led to the emergence of drug-resistant bacterial infections. Antibiotic incorporation into the wound dressing requires enormous advancement of the field to ensure that the needed dose is released when the infection arises. This study synthesized a series of antimicrobial α-aminophosphonate derivatives, and the most effective compound was incorporated into thermoresponsive wound dressing patches. Wound dressing mats were fabricated by needleless electrospinning, and the resultant nanofiber mats were coated with a thermoresponsive eicosane/cellulose nanocrystals o/w system loaded with active α-aminophosphonate derivatives. Chemical, physical, thermal, and antimicrobial properties of the wound dressings were characterized wound dressings. Using SEM analysis, Nanofibers spun with 20 % w/v solutions were selected for drug-emulsion loading since they showed lower diameters with higher surface area. Furthermore, the drug-emulsion coating on the electrospun dressings improved the hydrophilicity of the wound dressings, and the thermoresponsive behavior of the mats was proved using differential scanning calorimetry data. Finally, the drug-loaded electrospun meshes were found active against tested microorganisms, and clear inhibition zones were observed. In conclusion, this novel approach of synthesizing a new family of antimicrobial molecules and their incorporation into nanofibers from renewable sources exhibits great potential for smart and innovative dressings.


Assuntos
Anti-Infecciosos , Nanofibras , Nanopartículas , Nanofibras/química , Celulose/química , Emulsões/farmacologia , Cicatrização , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
4.
Int J Biol Macromol ; 182: 1590-1601, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015407

RESUMO

Pancreatic cancer is the fourth most lethal cancer type worldwide. Due to multiple levan applications including anticancer activities, studies related to levansucrase production are of interest. To our knowledge, levan effect on pancreatic cancer cells has not been tested previously. In this work, among eighteen bacterial honey isolates, Bacillus subtilis MT453867 showed the highest levan yield (33 g/L) and levansucrase production (8.31 U/mL). One-factor-at-a-time technique increased levansucrase activity by 60% when MgSO4 was eliminated. The addition of 60 g/L banana peels enhanced the enzyme activity (192 U/mL). Placket Burman design determined the media composition for maximum levan yield (54.8 g/L) and levansucrase production (505 U/mL). The identification of levan was confirmed by thin-layer chromatography, Fourier-Transform Infrared spectrometric analysis, 13C-nuclear-magnetic resonance, and 1H-nuclear-magnetic resonance. Both crude and dialyzed levan completely inhibited the pancreatic cancer cell line at 100 ppm with no cytotoxicity on the normal retinal cell line. The LD50 of crude levan was 4833 mg/kg body weight. Levan had strong antioxidant activity and significantly reduced the expression of CXCR4 and MCM7 genes in pancreatic cancer cells with significant DNA fragmentation. In conclusion, Bacillus subtilis MT453867 levan is a promising adjunct to pancreatic-anticancer agents with both anti-cancer and chemoprotective effects.


Assuntos
Antineoplásicos/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Frutanos/metabolismo , Hexosiltransferases/metabolismo , Antineoplásicos/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Frutanos/farmacologia , Humanos , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores CXCR4/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Curr Pharm Biotechnol ; 22(5): 654-671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32707027

RESUMO

OBJECTIVE: L-Asparaginase is an important enzyme that converts L-asparagine to L-aspartate and ammonia. Microbial L-asparaginase has important applications as anticancer and food processing agents. METHODS: This study reported the isolation, screening of a local yeast isolate from banana peel for L-asparaginase production using submerged fermentation, optimization of the production, purification, and anticancer assay of L-asparaginase. The yeast isolate was identified as Kodamaea ohmeri ANOMY based on the analysis of nuclear large subunit (26S) rDNA partial sequences. It was a promising L-asparaginase producer with a specific activity of 3059±193 U/mg in a non-optimized medium. The classical one-variable-at-a-time method was used to optimize the production medium components, and it was found that the elimination of K2HPO4 from the medium increased L-asparaginase specific activity (3100.90±180 U/mg). RESULTS: Statistical optimization of L-asparaginase production was done using Plackett-Burman and Box-Behnken designs. The production medium for the maximum L-asparaginase specific activity (8500±578U/mg) was as follows (g/L): L-asparagine (7.50), NaNO3 (0.50), MgSO4.7H2O (0.80), KCl (0.80) associated with an incubation period of 5 days, inoculum size of 5.60 %, and pH (7.0). The optimization process increased L-asparaginase production by 2.78-fold compared to the non-optimized medium. L-Asparaginase was purified using ammonium sulphate precipitation followed by gel filtration on a Sephadex G-100 column. Its molecular weight was 66 KDa by SDS-PAGE analysis. CONCLUSION: The cell morphology technique was used to evaluate the anticancer activity of L-asparaginase against three different cell lines. L-Asparaginase inhibited the growth of HepG-2, MCF-7, and HCT-116 cells at a concentration of 20, 50, and 60 µL, respectively.


Assuntos
Antineoplásicos/farmacologia , Asparaginase/farmacologia , Musa/microbiologia , Saccharomycetales/química , Antineoplásicos/química , Asparaginase/química , Asparaginase/isolamento & purificação , Linhagem Celular Tumoral , Cromatografia em Gel , Ensaios de Seleção de Medicamentos Antitumorais , Fermentação , Humanos
6.
R Soc Open Sci ; 7(10): 200928, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204462

RESUMO

This overall process deals with evaluating the performance of silver nanoparticles, synthesized from sodium caseinate (SC) as green biological active agent, in comparison with widely produced from carboxymethyl cellulose, other carbohydrates (oxidized nanocellulose fibres (OC) and starch (St)). The TGA, FTIR and TEM, as well as its antimicrobial activities toward pathogenic Gram-positive and Gram-negative bacteria in addition to the yeast strain Candida albicans NRRL Y-477 were examined. In addition, with regard to their anti-tumour activity, the evaluation was studied via many cancer cell lines against RPE1 (normal retina cell line). The results revealed that the SC-Ag(I) and CMC-Ag(I) complexes were formed in six- and five-membered chelate rings, respectively, as nanoparticles, while linear chelation structure was formed in case of OC-Ag(I) and St-Ag(I) complexes. The complexation of SC with Ag(I) ions was recommended as promising stable and antimicrobial agent, with lower free Ag(I) ions and particle size than other Ag-complexes. Moreover, it provided anti-tumour activity of most tested cell lines (in vitro), with the following sequence HCT116 > PC3 > HePG 2 > MCF-7 > A549 with IC50 and IC90 values of 25.8 and 54.73 µg ml-1, 45.1 and 66.7 µg ml-1, 64.3 and 110.7 µgml-1, 71.4 and 114.8 µgml-1 and 80.1 and 127.7 µgml-1, respectively. The promising effect of SC-Ag complex was also clear from its selective index versus RPE1 (normal retina cell line).

7.
Mini Rev Med Chem ; 19(20): 1717-1725, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31880237

RESUMO

BACKGROUND & OBJECTIVE: A new series of thiazoles substituted on the chromene scaffold were prepared by facial approaches starting from (E)-1-(2,3-Dihydrochromen-4-ylidene)thiosemicarbazide derivatives (2a,b). The thiosemicarbazides (2a,b) were reacted with a series of α-halo carbonyl compounds to give the corresponding rhodanine analogues and reacted also with C-acetyl-or Cethoxy- N-hydrazonoyl chlorides to afford the corresponding tri- and tetra-substituted hybrid hydrazinyl thiazole substituted chromenes. METHODS: The newly synthesized compounds were screened for their in vitro antimicrobial and antitumor activities by agar diffusion method and MTT assay, respectively. RESULTS: The results of the antimicrobial activity revealed that some of the new compounds exhibited excellent activity against pathogenic microorganism; Candida albicans compared with Ciprofloxacin and nystatin, as the reference drugs. All of the tested compounds exhibited significant cytotoxic activities comparable to that of the reference drug; Doxorubicin® (on HCT116 (colorectal carcinoma human cell line).


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzopiranos/química , Benzopiranos/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Ágar/química , Antibacterianos/química , Antineoplásicos/química , Bacillus subtilis/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Difusão , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Células HCT116 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazóis/síntese química
8.
Sci Rep ; 9(1): 13571, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537817

RESUMO

L-asparaginase is a promising enzyme that has a wide range of significant applications including cancer therapy and starchy food industries. The statistical design of Plackett-Burman and face centered central composite design were employed to optimize L-asparaginase production by Streptomyces brollosae NEAE-115. As a result, a medium of the following formula is the optimum for producing L-asparaginase in the culture filtrate of Streptomyces brollosae NEAE-115: Dextrose 2 g, starch 20 g, L-asparagine 10 g, KNO3 1 g, K2HPO4 1 g, MgSO4.7H2O 0.5 g, NaCl 0.1 g, pH 7, fermentation period 7 days, temperature 30 °C, inoculum size 4%, v/v, agitation speed 150 rpm and inoculum age 48 h. The kinetics of cell growth, carbohydrates consumption and L- asparaginase production were studied in 7-L stirred tank bioreactor under different cultivation conditions. A significant increase in both cell growth and carbohydrate consumption was observed as the stirring speed increased from 200 to 600 rpm under uncontrolled pH. The highest L- asparaginase activity of 108.46 U/mL was obtained after 96 h at 400 rpm. On the other hand, the specific enzyme production (Yp/x) under uncontrolled pH reached its maximal value of about 20.3 U/mg cells. Further improvement of enzyme production was attained by controlling pH at 7 using the selected stirring speed of 400 rpm. Enzyme production of 162.11 U/mL obtained from the controlled pH cultures exceeded this value gained from uncontrolled pH (108.46 U/mL) by about 50%.


Assuntos
Asparagina/metabolismo , Técnicas de Cultura Celular por Lotes/instrumentação , Streptomyces/crescimento & desenvolvimento , Asparagina/genética , Reatores Biológicos/microbiologia , Metabolismo dos Carboidratos , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Engenharia de Proteínas , Streptomyces/genética , Streptomyces/metabolismo , Temperatura
9.
J Pharm Sci ; 107(5): 1361-1371, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410038

RESUMO

Novel nonporous membranes were prepared by impregnating brushite and niobium pentoxide (Nb2O5) into a gelatin/alginate matrix. The physicochemical properties, morphology, and mechanical properties of the prepared membranes were characterized using X-ray diffractometer, FTIR spectroscopy, scanning electron microscopy, transmission electron microscopy, and universal testing machine, respectively. Swelling ability of the prepared membranes was determined in distilled water. The surfaces of the membranes were characterized by means of FTIR spectroscopy and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy after submersion in simulated body fluid up to 15 days. Moreover, the calcium and phosphorus ion concentrations in the simulated body fluid were measured using an UV spectrophotometer. The in vitro drug release and the release mechanism of a model antibiotic, namely, ciprofloxacin (CFX), were tested in phosphate-buffered saline for 15 days. The antibacterial activities of the CFX-loaded membranes were tested against known microorganisms. The physicochemical properties, morphology, mechanical properties, and swelling ability of the prepared membranes were found to be dependent on the presence of Nb2O5 allowing control of their properties. For example, the Nb2O5-loaded membranes exhibited a higher in vitro bioactivity and slower drug release compared to those of Nb2O5-free membranes. The CFX-loaded membranes also exhibited an excellent inhibition zones against the selected microorganisms. Overall, the prepared membranes have been found to be very promising for use in bone substitute applications.


Assuntos
Alginatos/química , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Sistemas de Liberação de Medicamentos , Gelatina/química , Membranas Artificiais , Nióbio/química , Óxidos/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Porosidade
10.
Acta Pol Pharm ; 74(3): 849-860, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-29513954

RESUMO

The present study investigates, the synthesis of new derivatives of benzenesulfonamide nucleus hybridized with various substituted pyrazole 4, 8 and thiazole ring 6 using 4-amino-N-butylbenzenesulfonamide 1 as the key starting compound. Furthermore, 3,5-diaminopyrazole derivative 10 was allowed to react with different reagents such as an active methylene compounds, ketone dithioacetal, ethoxymethylene malononitrile and cyanoguanidine for a preparation of new benzenesulfonamide derivatives 11-18 conjugated with different substituted hetero-bicyclic ring systems. In vitm-antimicrobial evaluation was performed for most of the newly synthesized compounds using ciprofloxacin and Fluconazole as antibacterial and antifungal standard drugs, respectively The most promising dual antibacterial and antifungal potency was gained by the sulfamoylphenyl butenoic acid derivative 7, followed by the sulfamoylphenyl-2-chloroacetamide 5 and its heterocyclic pyrazolopyrimidine derivative 16. Further development and structural optimization will be carried out to get new more potent and safer antimicrobials.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Descoberta de Drogas/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Tecnologia Farmacêutica/métodos
11.
Braz. arch. biol. technol ; 60: e17160210, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839070

RESUMO

ABSTRACT Response surface methodology was used to optimize lincomycin production by Streptomyces lincolnensis NRRL ISP-5355 in submerged fermentation. Screening of fermentation medium components to find their relative effect on lincomycin production was done using Plackett-Burman design. Malt extract, dextrin, soluble starch and (NH4)2SO4 were the most significant nutrient influenced on lincomycin production. Central composite design was applied to determine optimal concentrations of these factors and the effect of their mutual interactions. The interaction between soluble starch and (NH4)2SO4 was found to enhance the production, whereas malt extract and dextrin exhibited an influence independent from the other two factors. Using this statistical optimization method, maximum lincomycin concentration of 1345 μg/ml was obtained which represented a 40.5 % increase in titer than that acquired from the non-optimized medium. This statistically optimized medium was employed for lincomycin production through immobilization of Streptomyces lincolnensis by adsorption on synthetic cotton fibers. Immobilization technique improved the concentration to 1350 μg/ml higher than that produced from free cells cultures and could be maintained for longer than 17 days in a repeated batch system.

12.
Braz J Microbiol ; 45(2): 743-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25242966

RESUMO

The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 °C after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application.


Assuntos
Celulase/isolamento & purificação , Celulase/metabolismo , Streptomyces/metabolismo , Técnicas de Tipagem Bacteriana , Carboidratos/análise , Celulose/metabolismo , Análise por Conglomerados , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Saccharum/metabolismo , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/crescimento & desenvolvimento , Streptomyces/isolamento & purificação , Temperatura , Fatores de Tempo
13.
Braz. j. microbiol ; 45(2): 743-751, Apr.-June 2014. ilus, tab
Artigo em Inglês | LILACS | ID: lil-723113

RESUMO

The use of low cost agro-industrial residues for the production of industrial enzymes is one of the ways to reduce significantly production costs. Cellulase producing actinomycetes were isolated from soil and decayed agricultural wastes. Among them, a potential culture, strain NEAE-J, was selected and identified on the basis of morphological, cultural, physiological and chemotaxonomic properties, together with 16S rDNA sequence. It is proposed that strain NEAE-J should be included in the species Streptomyces albogriseolus as a representative of a novel sub-species, Streptomyces albogriseolus subsp. cellulolyticus strain NEAE-J and sequencing product was deposited in the GenBank database under accession number JN229412. This organism was tested for its ability to produce endoglucanase and release reducing sugars from agro-industrial residues as substrates. Sugarcane bagasse was the most suitable substrate for endoglucanase production. Effects of process variables, namely incubation time, temperature, initial pH and nitrogen source on production of endoglucanase by submerged fermentation using Streptomyces albogriseolus subsp. cellulolyticus have been studied. Accordingly optimum conditions have been determined. Incubation temperature of 30 ºC after 6 days, pH of 6.5, 1% sugarcane bagasse as carbon source and peptone as nitrogen source were found to be the optimum for endoglucanase production. Optimization of the process parameters resulted in about 2.6 fold increase in the endoglucanase activity. Therefore, Streptomyces albogriseolus subsp. cellulolyticus coud be potential microorganism for the intended application.


Assuntos
Celulase/isolamento & purificação , Celulase/metabolismo , Streptomyces/metabolismo , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , Carboidratos/análise , Celulose/metabolismo , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , /genética , Análise de Sequência de DNA , Saccharum/metabolismo , Streptomyces/classificação , Streptomyces/crescimento & desenvolvimento , Streptomyces/isolamento & purificação , Temperatura , Fatores de Tempo
14.
J Microbiol ; 52(1): 53-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24390838

RESUMO

Central composite design was chosen to determine the combined effects of four process variables (AgNO3 concentration, incubation period, pH level and inoculum size) on the extracellular biosynthesis of silver nanoparticles (AgNPs) by Streptomyces viridochromogenes. Statistical analysis of the results showed that incubation period, initial pH level and inoculum size had significant effects (P<0.05) on the biosynthesis of silver nanoparticles at their individual level. The maximum biosynthesis of silver nanoparticles was achieved at a concentration of 0.5% (v/v) of 1 mM AgNO3, incubation period of 96 h, initial pH of 9 and inoculum size of 2% (v/v). After optimization, the biosynthesis of silver nanoparticles was improved by approximately 5-fold as compared to that of the unoptimized conditions. The synthetic process of silver nanoparticle generation using the reduction of aqueous Ag+ ion by the culture supernatants of S. viridochromogenes was quite fast, and silver nanoparticles were formed immediately by the addition of AgNO3 solution (1 mM) to the cell-free supernatant. Initial characterization of silver nanoparticles was performed by visual observation of color change from yellow to intense brown color. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 400 nm, which confirmed the presence of silver nanoparticles. Fourier Transform Infrared Spectroscopy analysis provided evidence for proteins as possible reducing and capping agents for stabilizing the nanoparticles. Transmission Electron Microscopy revealed the extracellular formation of spherical silver nanoparticles in the size range of 2.15-7.27 nm. Compared to the cell-free supernatant, the biosynthesized AgNPs revealed superior antimicrobial activity against Gram-negative, Gram-positive bacterial strains and Candida albicans.


Assuntos
Nanopartículas/metabolismo , Prata/metabolismo , Streptomyces/metabolismo , Anti-Infecciosos/metabolismo , Carga Bacteriana , Candida albicans/efeitos dos fármacos , Meios de Cultura/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Streptomyces/crescimento & desenvolvimento , Ressonância de Plasmônio de Superfície , Fatores de Tempo
15.
3 Biotech ; 4(5): 533-544, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28324388

RESUMO

Marine endophytic fungi isolated from Red Sea organisms were screened for the production of dextranase enzyme. The most potent isolate was from the Red Sea sponge Callyspongia spp. and was selected for identification. The18S rRNA amplification for phylogenetic study revealed that the isolate was highly related to Aspergillus flocculosus strain NRRL 5224 by 99 %. Medium composition and culture conditions for dextranase production were optimized by response surface methodology. A significant influence of dextran, yeast extract, K2HPO4, NaNO3, NaCl, MgSO4.7H2O and culture requirements such as incubation time, inoculum size, medium volume and inoculum age on dextranase production was evaluated by Plackett-Burman design. The most significant factors were further optimized using Box-Behnken design. The model predicted a dextranase activity of 438.15 U/ml when dextran concentration, medium volume and incubation time were 2.1 g/l, 52.47/250 ml flask and 80.48 h, respectively. Verification of the model showed that dextranase production of 440 U/ml was observed under the optimal condition confirming the validity of the model.

16.
J Microbiol Biotechnol ; 24(4): 453-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24375417

RESUMO

The current research was focused on the extracellular biosynthesis of bactericidal silver nanoparticles (AgNPs) using cell-free supernatant of a local isolate previously identified as a novel Streptomyces aegyptia NEAE 102. The biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102 was quite fast and required far less time than previously published strains. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy, which confirmed the presence of AgNPs. Response surface methodology was chosen to evaluate the effects of four process variables (AgNO3 concentration, incubation period, pH levels, and inoculum size) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. Statistical analysis of the results showed that the linear and quadratic effects of incubation period, initial pH, and inoculum size had a significant effect (p < 0.05) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. The maximum silver nanoparticles biosynthesis (2.5 OD, at 400 nm ) was achieved in runs number 5 and 14 under the conditions of 1 mM AgNO3 (1-1.5% (v/v)), incubation period (72-96 h), initial pH (9-10), and inoculum size (2-4% (v/v)). An overall 4-fold increase in AgNPs biosynthesis was obtained as compared with that of unoptimized conditions. The biosynthesized silver nanoparticles were characterized using UV-VIS spectrophotometer and Fourier transform infrared spectroscopy analysis, in addition to antimicrobial properties. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic gram-positive (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) and yeast (Candida albicans).


Assuntos
Anti-Infecciosos/metabolismo , Biotecnologia/métodos , Nanopartículas/metabolismo , Prata/metabolismo , Streptomyces/metabolismo , Candida albicans/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Análise Espectral , Staphylococcus aureus/efeitos dos fármacos , Tecnologia Farmacêutica/métodos
17.
Acta Pol Pharm ; 69(4): 657-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876608

RESUMO

A number of substituted phenytoin derivatives in addition to their sugar hydrazones were newly synthesized. Furthermore, the corresponding derived 1,3,4-oxadiazole and their thioglycoside as well as their acyclic analogs were prepared. The antimicrobial activity of the prepared compounds was evaluated against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Aspergillus niger and Candida albicans. The dithiohydrazone as well as oxadiazole thiole derivatives, sugar hydrazones and acyclic nucleoside analogs were the highly active compounds.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Fenitoína/síntese química , Fenitoína/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Estrutura Molecular , Fenitoína/análogos & derivados , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...