Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(5): e1012067, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709825

RESUMO

Chromosome conformation capture (3C) technologies reveal the incredible complexity of genome organization. Maps of increasing size, depth, and resolution are now used to probe genome architecture across cell states, types, and organisms. Larger datasets add challenges at each step of computational analysis, from storage and memory constraints to researchers' time; however, analysis tools that meet these increased resource demands have not kept pace. Furthermore, existing tools offer limited support for customizing analysis for specific use cases or new biology. Here we introduce cooltools (https://github.com/open2c/cooltools), a suite of computational tools that enables flexible, scalable, and reproducible analysis of high-resolution contact frequency data. Cooltools leverages the widely-adopted cooler format which handles storage and access for high-resolution datasets. Cooltools provides a paired command line interface (CLI) and Python application programming interface (API), which respectively facilitate workflows on high-performance computing clusters and in interactive analysis environments. In short, cooltools enables the effective use of the latest and largest genome folding datasets.


Assuntos
Biologia Computacional , Software , Biologia Computacional/métodos , Linguagens de Programação , Genômica/métodos , Genoma/genética , Mapeamento Cromossômico/métodos , Humanos
2.
Bioinformatics ; 40(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402507

RESUMO

MOTIVATION: Genomic intervals are one of the most prevalent data structures in computational genome biology, and used to represent features ranging from genes, to DNA binding sites, to disease variants. Operations on genomic intervals provide a language for asking questions about relationships between features. While there are excellent interval arithmetic tools for the command line, they are not smoothly integrated into Python, one of the most popular general-purpose computational and visualization environments. RESULTS: Bioframe is a library to enable flexible and performant operations on genomic interval dataframes in Python. Bioframe extends the Python data science stack to use cases for computational genome biology by building directly on top of two of the most commonly-used Python libraries, NumPy and Pandas. The bioframe API enables flexible name and column orders, and decouples operations from data formats to avoid unnecessary conversions, a common scourge for bioinformaticians. Bioframe achieves these goals while maintaining high performance and a rich set of features. AVAILABILITY AND IMPLEMENTATION: Bioframe is open-source under MIT license, cross-platform, and can be installed from the Python Package Index. The source code is maintained by Open2C on GitHub at https://github.com/open2c/bioframe.


Assuntos
Biologia Computacional , Genômica , Biblioteca Gênica , Sítios de Ligação , Ciência de Dados
3.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376465

RESUMO

DNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present cell models that allow inducible and reversible DNAme modulation through DNMT1 depletion. By dynamically assessing whole genome and locus-specific effects of induced passive demethylation through cell divisions, we reveal a cooperative activity between DNMT1 and DNMT3B, but not of DNMT3A, to maintain and control DNAme. We show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin, compartmentalization, and peripheral localization. DNA methylation loss coincides with a gradual reduction of cell fitness due to G1 arrest, with minor levels of mitotic failure. Altogether, this system allows DNMTs and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNAme dysfunction and human disease.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , DNA Metiltransferase 3A , Epigenômica , Humanos , Divisão Celular , Heterocromatina/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA Metiltransferase 3A/genética , Linhagem Celular
4.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370777

RESUMO

The BigWig and BigBed file formats were originally designed for the visualization of next-generation sequencing data through a genome browser. Due to their versatility, these formats have long since become ubiquitous for the storage of processed sequencing data and regularly serve as the basis for downstream data analysis. As the number and size of sequencing experiments continues to accelerate, there is an increasing demand to efficiently generate and query BigWig and BigBed files in a scalable and robust manner, and to efficiently integrate these functionalities into data analysis environments and third-party applications. Here, we present Bigtools, a feature-complete, high-performance, and integrable software library for generating and querying both BigWig and BigBed files. Bigtools is written in the Rust programming language and includes a flexible suite of command line tools as well as bindings to Python. Bigtools is cross-platform and released under the MIT license. It is distributed on Crates.io and the Python Package Index, and the source code is available at https://github.com/jackh726/bigtools.

5.
Nat Metab ; 5(5): 861-879, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37253881

RESUMO

Recent large-scale genomic association studies found evidence for a genetic link between increased risk of type 2 diabetes and decreased risk for adiposity-related traits, reminiscent of metabolically obese normal weight (MONW) association signatures. However, the target genes and cellular mechanisms driving such MONW associations remain to be identified. Here, we systematically identify the cellular programmes of one of the top-scoring MONW risk loci, the 2q24.3 risk locus, in subcutaneous adipocytes. We identify a causal genetic variant, rs6712203, an intronic single-nucleotide polymorphism in the COBLL1 gene, which changes the conserved transcription factor motif of POU domain, class 2, transcription factor 2, and leads to differential COBLL1 gene expression by altering the enhancer activity at the locus in subcutaneous adipocytes. We then establish the cellular programme under the genetic control of the 2q24.3 MONW risk locus and the effector gene COBLL1, which is characterized by impaired actin cytoskeleton remodelling in differentiating subcutaneous adipocytes and subsequent failure of these cells to accumulate lipids and develop into metabolically active and insulin-sensitive adipocytes. Finally, we show that perturbations of the effector gene Cobll1 in a mouse model result in organismal phenotypes matching the MONW association signature, including decreased subcutaneous body fat mass and body weight along with impaired glucose tolerance. Taken together, our results provide a mechanistic link between the genetic risk for insulin resistance and low adiposity, providing a potential therapeutic hypothesis and a framework for future identification of causal relationships between genome associations and cellular programmes in other disorders.


Assuntos
Actinas , Adipócitos , Obesidade Metabolicamente Benigna , Humanos , Adipócitos/metabolismo , Actinas/metabolismo , Obesidade Metabolicamente Benigna/genética , Fatores de Transcrição/genética , Gordura Subcutânea/metabolismo , Células Cultivadas , Haplótipos , Camundongos Knockout , Masculino , Feminino , Camundongos , Animais
6.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824968

RESUMO

The field of 3D genome organization produces large amounts of sequencing data from Hi-C and a rapidly-expanding set of other chromosome conformation protocols (3C+). Massive and heterogeneous 3C+ data require high-performance and flexible processing of sequenced reads into contact pairs. To meet these challenges, we present pairtools - a flexible suite of tools for contact extraction from sequencing data. Pairtools provides modular command-line interface (CLI) tools that can be flexibly chained into data processing pipelines. Pairtools provides both crucial core tools as well as auxiliary tools for building feature-rich 3C+ pipelines, including contact pair manipulation, filtration, and quality control. Benchmarking pairtools against popular 3C+ data pipelines shows advantages of pairtools for high-performance and flexible 3C+ analysis. Finally, pairtools provides protocol-specific tools for multi-way contacts, haplotype-resolved contacts, and single-cell Hi-C. The combination of CLI tools and tight integration with Python data analysis libraries makes pairtools a versatile foundation for a broad range of 3C+ pipelines.

7.
Nat Struct Mol Biol ; 30(1): 38-51, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36550219

RESUMO

The relationships between chromosomal compartmentalization, chromatin state and function are poorly understood. Here by profiling long-range contact frequencies in HCT116 colon cancer cells, we distinguish three silent chromatin states, comprising two types of heterochromatin and a state enriched for H3K9me2 and H2A.Z that exhibits neutral three-dimensional interaction preferences and which, to our knowledge, has not previously been characterized. We find that heterochromatin marked by H3K9me3, HP1α and HP1ß correlates with strong compartmentalization. We demonstrate that disruption of DNA methyltransferase activity greatly remodels genome compartmentalization whereby domains lose H3K9me3-HP1α/ß binding and acquire the neutrally interacting state while retaining late replication timing. Furthermore, we show that H3K9me3-HP1α/ß heterochromatin is permissive to loop extrusion by cohesin but refractory to CTCF binding. Together, our work reveals a dynamic structural and organizational diversity of the silent portion of the genome and establishes connections between the regulation of chromatin state and chromosome organization, including an interplay between DNA methylation, compartmentalization and loop extrusion.


Assuntos
Cromatina , Heterocromatina , Metilação , Histonas/metabolismo , Homólogo 5 da Proteína Cromobox , Fatores de Transcrição/metabolismo
9.
Nat Commun ; 13(1): 2365, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501320

RESUMO

The 4D Nucleome (4DN) Network aims to elucidate the complex structure and organization of chromosomes in the nucleus and the impact of their disruption in disease biology. We present the 4DN Data Portal ( https://data.4dnucleome.org/ ), a repository for datasets generated in the 4DN network and relevant external datasets. Datasets were generated with a wide range of experiments, including chromosome conformation capture assays such as Hi-C and other innovative sequencing and microscopy-based assays probing chromosome architecture. All together, the 4DN data portal hosts more than 1800 experiment sets and 36000 files. Results of sequencing-based assays from different laboratories are uniformly processed and quality-controlled. The portal interface allows easy browsing, filtering, and bulk downloads, and the integrated HiGlass genome browser allows interactive visualization and comparison of multiple datasets. The 4DN data portal represents a primary resource for chromosome contact and other nuclear architecture data for the scientific community.


Assuntos
Cromossomos , Software , Núcleo Celular/genética , Cromossomos/genética , Genoma
11.
Bioinformatics ; 37(14): 2053-2054, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33135074

RESUMO

MOTIVATION: Single-cell Hi-C research currently lacks an efficient, easy to use and shareable data storage format. Recent studies have used a variety of sub-optimal solutions: publishing raw data only, text-based interaction matrices, or reusing established Hi-C storage formats for single interaction matrices. These approaches are storage and pre-processing intensive, require long labour time and are often error-prone. RESULTS: The single-cell cooler file format (scool) provides an efficient, user-friendly and storage-saving approach for single-cell Hi-C data. It is a flavour of the established cooler format and guarantees stable API support. AVAILABILITY AND IMPLEMENTATION: The single-cell cooler format is part of the cooler file format as of API version 0.8.9. It is available via pip, conda and github: https://github.com/mirnylab/cooler. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Armazenamento e Recuperação da Informação , Software
12.
Mol Cell ; 78(3): 554-565.e7, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213324

RESUMO

Over the past decade, 3C-related methods have provided remarkable insights into chromosome folding in vivo. To overcome the limited resolution of prior studies, we extend a recently developed Hi-C variant, Micro-C, to map chromosome architecture at nucleosome resolution in human ESCs and fibroblasts. Micro-C robustly captures known features of chromosome folding including compartment organization, topologically associating domains, and interactions between CTCF binding sites. In addition, Micro-C provides a detailed map of nucleosome positions and localizes contact domain boundaries with nucleosomal precision. Compared to Hi-C, Micro-C exhibits an order of magnitude greater dynamic range, allowing the identification of ∼20,000 additional loops in each cell type. Many newly identified peaks are localized along extrusion stripes and form transitive grids, consistent with their anchors being pause sites impeding cohesin-dependent loop extrusion. Our analyses comprise the highest-resolution maps of chromosome folding in human cells to date, providing a valuable resource for studies of chromosome organization.


Assuntos
Cromossomos Humanos/ultraestrutura , Animais , Fator de Ligação a CCCTC/metabolismo , Células Cultivadas , Cromatina/química , Cromossomos de Mamíferos/ultraestrutura , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Humanos , Masculino , Mamíferos/genética , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Razão Sinal-Ruído
13.
Bioinformatics ; 36(1): 311-316, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31290943

RESUMO

MOTIVATION: Most existing coverage-based (epi)genomic datasets are one-dimensional, but newer technologies probing interactions (physical, genetic, etc.) produce quantitative maps with two-dimensional genomic coordinate systems. Storage and computational costs mount sharply with data resolution when such maps are stored in dense form. Hence, there is a pressing need to develop data storage strategies that handle the full range of useful resolutions in multidimensional genomic datasets by taking advantage of their sparse nature, while supporting efficient compression and providing fast random access to facilitate development of scalable algorithms for data analysis. RESULTS: We developed a file format called cooler, based on a sparse data model, that can support genomically labeled matrices at any resolution. It has the flexibility to accommodate various descriptions of the data axes (genomic coordinates, tracks and bin annotations), resolutions, data density patterns and metadata. Cooler is based on HDF5 and is supported by a Python library and command line suite to create, read, inspect and manipulate cooler data collections. The format has been adopted as a standard by the NIH 4D Nucleome Consortium. AVAILABILITY AND IMPLEMENTATION: Cooler is cross-platform, BSD-licensed and can be installed from the Python package index or the bioconda repository. The source code is maintained on Github at https://github.com/mirnylab/cooler. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Armazenamento e Recuperação da Informação , Software , Algoritmos , Genômica/métodos , Metadados
14.
Nat Commun ; 10(1): 4486, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582744

RESUMO

Genome organization involves cis and trans chromosomal interactions, both implicated in gene regulation, development, and disease. Here, we focus on trans interactions in Drosophila, where homologous chromosomes are paired in somatic cells from embryogenesis through adulthood. We first address long-standing questions regarding the structure of embryonic homolog pairing and, to this end, develop a haplotype-resolved Hi-C approach to minimize homolog misassignment and thus robustly distinguish trans-homolog from cis contacts. This computational approach, which we call Ohm, reveals pairing to be surprisingly structured genome-wide, with trans-homolog domains, compartments, and interaction peaks, many coinciding with analogous cis features. We also find a significant genome-wide correlation between pairing, transcription during zygotic genome activation, and binding of the pioneer factor Zelda. Our findings reveal a complex, highly structured organization underlying homolog pairing, first discovered a century ago in Drosophila. Finally, we demonstrate the versatility of our haplotype-resolved approach by applying it to mammalian embryos.


Assuntos
Pareamento Cromossômico , Cromossomos de Insetos/genética , Drosophila melanogaster/genética , Genoma de Inseto , Animais , Técnicas de Cultura de Células , Linhagem Celular , Cromatina/metabolismo , Biologia Computacional , Conjuntos de Dados como Assunto , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião de Mamíferos , Embrião não Mamífero , Feminino , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/metabolismo , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Zigoto
15.
Curr Opin Cell Biol ; 58: 142-152, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31228682

RESUMO

The spatial organization of chromosomes has long been connected to their polymeric nature and is believed to be important for their biological functions, including the control of interactions between genomic elements, the maintenance of genetic information, and the compaction and safe transfer of chromosomes to cellular progeny. chromosome conformation capture techniques, particularly Hi-C, have provided a comprehensive picture of spatial chromosome organization and revealed new features and elements of chromosome folding. Furthermore, recent advances in microscopy have made it possible to obtain distance maps for extensive regions of chromosomes (Bintu et al., 2018; Nir et al., 2018 [2••,3]), providing information complementary to, and in excellent agreement with, Hi-C maps. Not only has the resolution of both techniques advanced significantly, but new perturbation data generated in the last two years have led to the identification of molecular mechanisms behind large-scale genome organization. Two major mechanisms that have been proposed to govern chromosome organization are (i) the active (ATP-dependent) process of loop extrusion by Structural Maintenance of Chromosomes (SMC) complexes, and (ii) the spatial compartmentalization of the genome, which is likely mediated by affinity interactions between heterochromatic regions (Falk et al., 2019 [76••]) rather than by ATP-dependent processes. Here, we review existing evidence that these two processes operate together to fold chromosomes in interphase and that loop extrusion alone drives mitotic compaction. We discuss possible implications of these mechanisms for chromosome function.


Assuntos
Cromossomos/química , Animais , Fator de Ligação a CCCTC/metabolismo , Ciclo Celular , Estruturas Cromossômicas , Cromossomos/metabolismo , Regulação da Expressão Gênica , Genoma , Humanos , Interfase
16.
Genome Biol ; 19(1): 125, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143029

RESUMO

We present HiGlass, an open source visualization tool built on web technologies that provides a rich interface for rapid, multiplex, and multiscale navigation of 2D genomic maps alongside 1D genomic tracks, allowing users to combine various data types, synchronize multiple visualization modalities, and share fully customizable views with others. We demonstrate its utility in exploring different experimental conditions, comparing the results of analyses, and creating interactive snapshots to share with collaborators and the broader public. HiGlass is accessible online at http://higlass.io and is also available as a containerized application that can be run on any platform.


Assuntos
Mapeamento Cromossômico , Genoma , Internet , Interface Usuário-Computador
17.
Proc Natl Acad Sci U S A ; 115(29): E6697-E6706, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967174

RESUMO

Mammalian chromatin is spatially organized at many scales showing two prominent features in interphase: (i) alternating regions (1-10 Mb) of active and inactive chromatin that spatially segregate into different compartments, and (ii) domains (<1 Mb), that is, regions that preferentially interact internally [topologically associating domains (TADs)] and are central to gene regulation. There is growing evidence that TADs are formed by active extrusion of chromatin loops by cohesin, whereas compartmentalization is established according to local chromatin states. Here, we use polymer simulations to examine how loop extrusion and compartmental segregation work collectively and potentially interfere in shaping global chromosome organization. A model with differential attraction between euchromatin and heterochromatin leads to phase separation and reproduces compartmentalization as observed in Hi-C. Loop extrusion, essential for TAD formation, in turn, interferes with compartmentalization. Our integrated model faithfully reproduces Hi-C data from puzzling experimental observations where altering loop extrusion also led to changes in compartmentalization. Specifically, depletion of chromatin-associated cohesin reduced TADs and revealed finer compartments, while increased processivity of cohesin strengthened large TADs and reduced compartmentalization; and depletion of the TAD boundary protein CTCF weakened TADs while leaving compartments unaffected. We reveal that these experimental perturbations are special cases of a general polymer phenomenon of active mixing by loop extrusion. Our results suggest that chromatin organization on the megabase scale emerges from competition of nonequilibrium active loop extrusion and epigenetically defined compartment structure.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Cromossomos de Mamíferos/metabolismo , Modelos Biológicos , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Coesinas
18.
Nature ; 551(7678): 51-56, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29094699

RESUMO

Imaging and chromosome conformation capture studies have revealed several layers of chromosome organization, including segregation into megabase-sized active and inactive compartments, and partitioning into sub-megabase domains (TADs). It remains unclear, however, how these layers of organization form, interact with one another and influence genome function. Here we show that deletion of the cohesin-loading factor Nipbl in mouse liver leads to a marked reorganization of chromosomal folding. TADs and associated Hi-C peaks vanish globally, even in the absence of transcriptional changes. By contrast, compartmental segregation is preserved and even reinforced. Strikingly, the disappearance of TADs unmasks a finer compartment structure that accurately reflects the underlying epigenetic landscape. These observations demonstrate that the three-dimensional organization of the genome results from the interplay of two independent mechanisms: cohesin-independent segregation of the genome into fine-scale compartments, defined by chromatin state; and cohesin-dependent formation of TADs, possibly by loop extrusion, which helps to guide distant enhancers to their target genes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Posicionamento Cromossômico , Animais , Cromatina/química , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Fígado/metabolismo , Camundongos , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Coesinas
19.
Epigenetics Chromatin ; 10(1): 35, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693562

RESUMO

BACKGROUND: In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. RESULTS: We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. CONCLUSIONS: Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing topologically associating domain.


Assuntos
Proteínas Aviárias/genética , Cromatina/genética , Ativação Transcricional , Regulação para Cima , alfa-Globinas/genética , Animais , Proteínas Aviárias/metabolismo , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular , Galinhas , Cromatina/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Eritropoese , Genes Essenciais , Ligação Proteica , alfa-Globinas/metabolismo
20.
Cell ; 169(5): 930-944.e22, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525758

RESUMO

The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Furthermore, our data support that CTCF mediates transcriptional insulator function through enhancer blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding, these results provide new fundamental insights into the rules governing mammalian genome organization.


Assuntos
Cromossomos de Mamíferos/química , Animais , Fator de Ligação a CCCTC , Ciclo Celular , Cromatina/metabolismo , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Ácidos Indolacéticos/farmacologia , Camundongos , Proteínas Repressoras/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...