Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0304673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820398

RESUMO

In Tunisia, Orobanche foetida Poir. is considered an important agricultural biotic constraint on faba bean (Vicia faba L.) production. An innovative control method for managing this weed in faba bean is induced resistance through inoculation by rhizobia strains. In this study, we explored the biochemical dynamics in V. faba L. minor inoculated by rhizobia in response to O. foetida parasitism. A systemic induced resistant reaction was evaluated through an assay of peroxidase (POX), polyphenol oxidase (PPO) and phenyl alanine ammonialyase (PAL) activity and phenolic compound and hydrogen peroxide (H2O2) accumulation in faba bean plants infested with O. foetida and inoculated with rhizobia. Two rhizobia strains (Mat, Bj1) and a susceptible variety of cultivar Badi were used in a co-culture Petri dish experiment. We found that Mat inoculation significantly decreased O. foetida germination and the number of tubercles on the faba bean roots by 87% and 88%, respectively. Following Bj1 inoculation, significant decreases were only observed in O. foetida germination (62%). In addition, Mat and Bj1 inoculation induced a delay in tubercle formation (two weeks) and necrosis in the attached tubercles (12.50% and 4.16%, respectively) compared to the infested control. The resistance of V. faba to O. foetida following Mat strain inoculation was mainly associated with a relatively more efficient enzymatic antioxidative response. The antioxidant enzyme activity was enhanced following Mat inoculation of the infected faba bean plant. Indeed, increases of 45%, 67% and 86% were recorded in the POX, PPO and PAL activity, respectively. Improvements of 56% and 12% were also observed in the soluble phenolic and H2O2 contents. Regarding inoculation with the Bj1 strain, significant increases were only observed in soluble phenolic and H2O2 contents and PPO activity (especially at 45 days after inoculation) compared to the infested control. These results imply that inoculation with the rhizobia strains (especially Mat) induced resistance and could bio-protect V. faba against O. foetida parasitism by inducing systemic resistance, although complete protectionwas not achieved by rhizobia inoculation. The Mat strain could be used as a potential candidate for the development of an integrated method for controlling O. foetida parasitism in faba bean.


Assuntos
Peróxido de Hidrogênio , Orobanche , Vicia faba , Vicia faba/microbiologia , Vicia faba/parasitologia , Vicia faba/metabolismo , Peróxido de Hidrogênio/metabolismo , Catecol Oxidase/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Rhizobium/fisiologia , Peroxidase/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Fenilalanina Amônia-Liase/metabolismo
2.
Life (Basel) ; 13(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37240723

RESUMO

During drought stress, many enzymes are inactivated in plants due to Zn deficiency. Zn application and arbuscular mycorrhiza fungi (AMF)-wheat symbiosis reportedly improve the tolerance of plants to drought stress. This study was done to investigate the effect of Zn and AMF on plant growth, yield attributes, relative water content (RWC), harvest index (HI), photosynthetic activity, solute accumulation, glycine betaine (GB) accumulation, antioxidant activities [(catalase (CAT) and superoxide dismutase (SOD)], and ionic attributes in a bread wheat cultivar (SST806) under drought-stress in plants grown under greenhouse conditions. Zn application and AMF inoculation, separately and combined, enhanced all plant growth parameters and yield. Root dry weight (RDW) was increased by 25, 30, and 46% for these three treatments, respectively, under drought conditions compared to the control treatment. Overall, Zn application, AMF inoculation, and their combination increased protein content, RWC, and harvest index (HI) under drought stress. However, AMF inoculation improved proline content more than Zn application under the same conditions. Regarding GB accumulation, AMF, Zn, and the combination of Zn and AMF increased GB under drought compared to well-watered conditions by 31.71, 10.36, and 70.70%, respectively. For the antioxidant defense, AMF inoculation and Zn application improved SOD and CAT activity by 58 and 56%, respectively. This study showed that Zn and/or AMF increased antioxidant levels and ionic attributes under abiotic stress.

3.
Plants (Basel) ; 11(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890487

RESUMO

Abiotic constraints such as salinity stress reduce cereal production. Salicylic acid is an elicitor of abiotic stress tolerance in plants. The aim of this study was to investigate the effects of salicylic acid on two bread wheat cultivars (SST806 and PAN3497) grown under salt stress (100 and 200 mM NaCl) in the presence and absence of 0.5 mM salicylic acid. The highest salt concentration (200 mM), in both PAN3497 and SST806, increased the days to germination and reduced the coleoptile and radicle dry weights. The shoot dry weight was reduced by 75 and 39%, root dry weight by 73 and 37%, spike number of both by 50%, spike weight by 73 and 54%, grain number by 62 and 15%, grain weight per spike by 80 and 45%, and 1000 grain weight by 9 and 29% for 200 and 100 mM NaCl, respectively. Salicylic acid in combination with 100 mM and 200 mM NaCl increased the shoot, root, and yield attributes. Salicylic acid increased the grain protein content, especially at 200 mM NaCl, and the increase was higher in SST806 than PAN3497. The macro-mineral concentration was markedly increased by an increase of NaCl. This was further increased by salicylic acid treatment for both SST806 and PAN3497. Regarding micro-minerals, Na was increased more than the other minerals in both cultivars. Mn, Zn, Fe, and Cu were increased under 100 mM and 200 Mm of salt, and salicylic acid application increased these elements further in both cultivars. These results suggested that salicylic acid application improved the salt tolerance of these two bread wheat cultivars.

4.
Plants (Basel) ; 10(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34579289

RESUMO

Abiotic constraints such as water deficit reduce cereal production. Plants have different strategies against these stresses to improve plant growth, physiological metabolism and crop production. For example, arbuscular mycorrhiza (AM)-bread wheat association has been shown to improve tolerance to drought stress conditions. The objective of this study was to determine the effect of AM inoculation on plant characteristics, lipid peroxidation, solute accumulation, water deficit saturation, photosynthetic activity, total phenol secretion and enzymatic activities including peroxidise (PO) and polyphenol oxidase (PPO) in two bread wheat cultivars (PAN3497 and SST806) under well-watered and drought-stressed conditions in plants grown under greenhouse conditions, to determine whether AM can enhance drought tolerance in wheat. AM inoculation improved morphological and physiological parameters in plants under stress. The leaf number increased by 35% and 5%, tiller number by 25% and 23%, chlorophyll content by 7% and 10%, accumulation of soluble sugars by 33% and 14%, electrolyte leakage by 26% and 32%, PPO by 44% and 47% and PO by 30% and 37% respectively, in PAN3497 and SST806, respectively. However, drought stress decreased proline content by 20% and 24%, oxidative damage to lipids measured as malondialdehyde by 34% and 60%, and total phenol content by 55% and 40% respectively, in AM treated plants of PAN3497 and SST806. PAN3497 was generally more drought-sensitive than SST806. This study showed that AM can contribute to protect plants against drought stress by alleviating water deficit induced oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...