Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(5): 4885-4923, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38785562

RESUMO

Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer.

2.
Antibiotics (Basel) ; 12(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37760668

RESUMO

Plasma-treated water (PTW) has emerged as a potential sanitizing agent. This study evaluated antibacterial activity, inhibition of invasion, and biofilm disruption effects of PTW against Salmonella Typhimurium. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined for different PTW types. Time-kill assays were conducted to assess bactericidal effects, while polarized Caco-2 cells were used to evaluate invasion inhibition. Biofilm formation and cell viability were examined following PTW treatment using Salmonella Typhimurium isolates, while biofilm disruption and regrowth prevention were investigated using the Bioflux system. PTW exhibited antibacterial activity against all Salmonella Typhimurium isolates, with MICs of 25% for PTW1 and PTW2, and 50% for PTW3, PTW4, and PTW5. MBCs of 50% in media were observed for all PTW types. Undiluted PTW1 and PTW2 showed the highest bactericidal capacity, significantly reduced Salmonella viability, and completely inhibited bacterial invasion, while PTW3 and PTW5 also showed significant invasion reduction. Bioflux experiments confirmed the eradication of biofilms by PTW1 and PTW2, with no regrowth observed 72 h after PTW was removed. PTW demonstrated significant antibacterial activity, inhibition of invasion, biofilm disruption, and reduction of bacterial viability against Salmonella Typhimurium. This highlights PTW's potential as an effective sanitizer for reducing Salmonella contaminations.

3.
Biofilm ; 5: 100130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37274173

RESUMO

Surgical site infections (SSIs) are mainly caused by Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) biofilms. Biofilms are aggregates of bacteria embedded in a self-produced matrix that offers protection against antibiotics and promotes the spread of antibiotic-resistance in bacteria. Consequently, antibiotic treatment frequently fails, resulting in the need for alternative therapies. The present study describes the in vitro efficacy of the Cu(DDC)2 complex (2:1 M ratio of diethyldithiocarbamate (DDC-) and Cu2+) with additional Cu2+ against S. aureus and S. epidermidis biofilms in models mimicking SSIs and in vitro antibacterial activity of a liposomal Cu(DDC)2 + Cu2+ formulation. The in vitro activity on S. aureus and S. epidermidis biofilms grown on two hernia mesh materials and in a wound model was determined by colony forming unit (CFU) counting. Cu2+-liposomes and Cu(DDC)2-liposomes were prepared, and their antibacterial activity was assessed in vitro using the alamarBlue assay and CFU counting and in vivo using a Galleria mellonella infection model. The combination of 35 µM DDC- and 128 µM Cu2+ inhibited S. aureus and S. epidermidis biofilms on meshes and in a wound infection model. Cu(DDC)2-liposomes + free Cu2+ displayed similar antibiofilm activity to free Cu(DDC)2 + Cu2+, and significantly increased the survival of S. epidermidis-infected larvae. Whilst Cu(DDC)2 + Cu2+ showed substantial antibiofilm activity in vitro against clinically relevant biofilms, its application in mammalian in vivo models is limited by solubility. The liposomal Cu(DDC)2 + Cu2+ formulation showed antibiofilm activity in vitro and antibacterial activity and low toxicity in G. mellonella, making it a suitable water-soluble formulation for future application on infected wounds in animal trials.

4.
Front Microbiol ; 13: 999893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160243

RESUMO

Staphylococcus aureus and Staphylococcus epidermidis are associated with life-threatening infections. Despite the best medical care, these infections frequently occur due to antibiotic resistance and the formation of biofilms of these two bacteria (i.e., clusters of bacteria embedded in a matrix). As a consequence, there is an urgent need for effective anti-biofilm treatments. Here, we describe the antibacterial properties of a combination treatment of diethyldithiocarbamate (DDC) and copper ions (Cu2+) and their low toxicity in vitro and in vivo. The antibacterial activity of DDC and Cu2+ was assessed in vitro against both planktonic and biofilm cultures of S. aureus and S. epidermidis using viability assays, microscopy, and attachment assays. Cytotoxicity of DDC and Cu2+ (DDC-Cu2+) was determined using a human fibroblast cell line. In vivo antimicrobial activity and toxicity were monitored in Galleria mellonella larvae. DDC-Cu2+ concentrations of 8 µg/ml DDC and 32 µg/ml Cu2+ resulted in over 80% MRSA and S. epidermidis biofilm killing, showed synergistic and additive effects in both planktonic and biofilm cultures of S. aureus and S. epidermidis, and synergized multiple antibiotics. DDC-Cu2+ inhibited MRSA and S. epidermidis attachment and biofilm formation in the xCELLigence and Bioflux systems. In vitro and in vivo toxicity of DDC, Cu2+ and DDC-Cu2+ resulted in > 70% fibroblast viability and > 90% G. mellonella survival. Treatment with DDC-Cu2+ significantly increased the survival of infected larvae (87% survival of infected, treated larvae vs. 47% survival of infected, untreated larvae, p < 0.001). Therefore, DDC-Cu2+ is a promising new antimicrobial with activity against planktonic and biofilm cultures of S. epidermidis and S. aureus and low cytotoxicity in vitro. This gives us high confidence to progress to mammalian animal studies, testing the antimicrobial efficacy and safety of DDC-Cu2+.

5.
Histochem Cell Biol ; 158(5): 485-496, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35849202

RESUMO

Zinc homeostasis is vital to immune and other organ system functions, yet over a quarter of the world's population is zinc deficient. Abnormal zinc transport or storage protein expression has been linked to diseases, such as cancer and chronic obstructive pulmonary disorder. Although recent studies indicate a role for zinc regulation in vascular functions and diseases, detailed knowledge of the mechanisms involved remains unknown. This study aimed to assess protein expression and localization of zinc transporters of the SLC39A/ZIP family (ZIPs) and metallothioneins (MTs) in human subcutaneous microvessels and to relate them to morphological features and expression of function-related molecules in the microvasculature. Microvessels in paraffin biopsies of subcutaneous adipose tissues from 14 patients undergoing hernia reconstruction surgery were analysed for 9 ZIPs and 3 MT proteins by MQCM (multifluorescence quantitative confocal microscopy). Zinc regulation proteins detected in human microvasculature included ZIP1, ZIP2, ZIP8, ZIP10, ZIP12, ZIP14 and MT1-3, which showed differential localization among endothelial and smooth muscle cells. ZIP1, ZIP2, ZIP12 and MT3 showed significantly (p < 0.05) increased immunoreactivities, in association with increased microvascular muscularization, and upregulated ET-1, α-SMA and the active form of p38 MAPK (Thr180/Tyr182 phosphorylated, p38 MAPK-P). These findings support roles of the zinc regulation system in microvascular physiology and diseases.


Assuntos
Proteínas de Transporte de Cátions , Humanos , Proteínas de Transporte de Cátions/metabolismo , Zinco/metabolismo , Metalotioneína/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Biol Trace Elem Res ; 199(6): 2158-2171, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32776265

RESUMO

INTRODUCTION: Zinc is an important essential micronutrient with anti-oxidative and anti-inflammatory properties in humans. The role of zinc in signalling has been characterized in the nervous, endocrine, gastrointestinal, renal and reproductive systems. Relatively little is known regarding its role in the vascular system, but the role of zinc homeostasis in augmenting vascular health and vasorelaxation is emerging. Zinc transport proteins are integral to the protective function of zinc, but knowledge of their expression in vascular endothelial and smooth muscle cells is lacking. METHODOLOGY: Human coronary artery endothelial cells and pulmonary artery smooth muscle cells were assessed for gene expression (RT-PCR) of SLC39A (ZIP), SLC30A (ZnT) and metallothionein (MT) families of Zn transporters and storage proteins. Protein expression (fluorescence confocal microscopy) was then analysed for the proteins of interest that changed mRNA expression: ZIP2, ZIP12, ZnT1, ZnT2 and MT1/2. RESULTS: Endothelial and smooth muscle cell mRNA expression of ZnT1, ZnT2 and MT1 was significantly downregulated by low and high Zn conditions, while ZIP2 and ZIP12 expression was induced by Zn depletion with the Zn chelator, TPEN. Changes in gene expression were consistent with protein expression levels for ZIP2, ZIP12 and MT1, where ZIP2 was localized to intracellular bodies and ZIP12 to lamellipodia. CONCLUSION: Vascular endothelial and smooth muscle cells actively regulate specific Zn transport and metallothionein gene and protein expressions to achieve Zn homeostasis.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Transporte , Proteínas de Transporte de Cátions/genética , Células Endoteliais/metabolismo , Homeostase , Humanos , Miócitos de Músculo Liso/metabolismo , Zinco/metabolismo , Zinco/farmacologia
8.
J Inflamm (Lond) ; 17: 16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32336954

RESUMO

BACKGROUND: Inflammasomes and sphingosine-1-phosphate (S1P) signalling are increasingly subject to intensive research in human diseases. We hypothesize that in respiratory muco-obstructive diseases, mucus obstruction enhances NLRP3 inflammasome activation and dysregulated S1P signalling. METHODS: Lung tissues from mice overexpressing the beta-unit of the epithelial sodium channel (ßENaC) and their littermate controls were examined by histology, immunofluorescence and confocal microscopy, followed by ImageJ quantitative analysis. RESULTS: Lower airways in ßENaC mice showed patchy patterns of mucus obstruction and neutrophil-dominant infiltrations. In contrast to a ubiquitous distribution of TNFα specks, significantly (p < 0.05) increased specks of bronchiolar NLRP3, IL-1ß, and IgG in the ßENaC mouse lungs were localized to the vicinity of mucus obstruction sites. Bright Spinster homologue 2 (SPNS2) at the epithelial apex and positive correlation with sphingosine kinase 1 (SPHK1) (R2 = 0.640; p < 0.001) supported the normal bronchial epithelium as an active generator of extracellular S1P. SPNS2 in ßENaC mice was sharply reduced (38%, p < 0.05) and lost apical localization at sites of mucus obstruction. A significant (34%; p < 0.01) decrease in epithelial SPHK2 was also noted at mucus obstruction sites. CONCLUSION: These results support that mucus obstruction may enhance NLRP3 inflammasome activation and dysregulated S1P signaling.

9.
Int J Mol Sci ; 20(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597899

RESUMO

The acute phase protein serum amyloid A (SAA) is associated with endothelial dysfunction and early-stage atherogenesis. Stimulation of vascular cells with SAA increases gene expression of pro-inflammation cytokines and tissue factor (TF). Activation of the transcription factor, nuclear factor kappa-B (NFκB), may be central to SAA-mediated endothelial cell inflammation, dysfunction and pro-thrombotic responses, while targeting NFκB with a pharmacologic inhibitor, BAY11-7082, may mitigate SAA activity. Human carotid artery endothelial cells (HCtAEC) were pre-incubated (1.5 h) with 10 µM BAY11-7082 or vehicle (control) followed by SAA (10 µg/mL; 4.5 h). Under these conditions gene expression for TF and Tumor Necrosis Factor (TNF) increased in SAA-treated HCtAEC and pre-treatment with BAY11-7082 significantly (TNF) and marginally (TF) reduced mRNA expression. Intracellular TNF and interleukin 6 (IL-6) protein also increased in HCtAEC supplemented with SAA and this expression was inhibited by BAY11-7082. Supplemented BAY11-7082 also significantly decreased SAA-mediated leukocyte adhesion to apolipoprotein E-deficient mouse aorta in ex vivo vascular flow studies. In vascular function studies, isolated aortic rings pre-treated with BAY11-7082 prior to incubation with SAA showed improved endothelium-dependent vasorelaxation and increased vascular cyclic guanosine monophosphate (cGMP) content. Together these data suggest that inhibition of NFκB activation may protect endothelial function by inhibiting the pro-inflammatory and pro-thrombotic activities of SAA.


Assuntos
Aorta/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Leucócitos/metabolismo , NF-kappa B/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Aorta/patologia , Aterosclerose/etiologia , Aterosclerose/metabolismo , Biomarcadores , Adesão Celular , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Mediadores da Inflamação , Leucócitos/imunologia , Ratos
10.
Redox Biol ; 13: 623-632, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28818791

RESUMO

Low-density lipoprotein (LDL) modified by hypochlorous acid (HOCl) produced by myeloperoxidase (MPO) is present in atherosclerotic lesions, where it is implicated in the propagation of inflammation and acceleration of lesion development by multiple pathways, including the induction of endothelial dysfunction. Thiocyanate (SCN-) ions are utilised by MPO to produce the oxidant hypothiocyanous acid (HOSCN), which reacts with LDL in a different manner to HOCl. Whilst the reactivity of HOCl-modified LDL has been previously studied, the role of HOSCN in the modification of LDL in vivo is poorly defined, although emerging evidence suggests that these particles have distinct biological properties. This is important because elevated plasma SCN- is linked with both the propagation and prevention of atherosclerosis. In this study, we demonstrate that both HOSCN- and HOCl-modified LDL inhibit endothelium-mediated vasorelaxation ex vivo in rat aortic ring segments. In vitro experiments with human coronary artery endothelial cells show that HOSCN-modified LDL decreases in the production of nitric oxide (NO•) and induces the loss of endothelial nitric oxide synthase (eNOS) activity. This occurs to a similar extent to that seen with HOCl-modified LDL. In each case, these effects are related to eNOS uncoupling, rather than altered expression, phosphorylation or cellular localisation. Together, these data provide new insights into role of MPO and LDL modification in the induction of endothelial dysfunction, which has implications for both the therapeutic use of SCN- within the setting of atherosclerosis and for smokers, who have elevated plasma levels of SCN-, and are more at risk of developing cardiovascular disease.


Assuntos
Células Endoteliais/metabolismo , Ácido Hipocloroso/metabolismo , Lipoproteínas LDL/metabolismo , Peroxidase/metabolismo , Tiocianatos/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Aorta/fisiologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Ácido Hipocloroso/farmacologia , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Sprague-Dawley , Tiocianatos/farmacologia , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...