Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Med Phys ; 51(5): 3782-3795, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569067

RESUMO

BACKGROUND: Interpatient variation of tumor radiosensitivity is rarely considered during the treatment planning process despite its known significance for the therapeutic outcome. PURPOSE: To apply our mechanistic biophysical model to investigate the biological robustness of carbon ion radiotherapy (CIRT) against DNA damage repair interference (DDRi) associated patient-to-patient variability in radiosensitivity and its potential clinical advantages against conventional radiotherapy approaches. METHODS AND MATERIALS: The "UNIfied and VERSatile bio response Engine" (UNIVERSE) was extended by carbon ions and its predictions were compared to a panel of in vitro and in vivo data including various endpoints and DDRi settings within clinically relevant dose and linear energy transfer (LET) ranges. The implications of UNIVERSE predictions were then assessed in a clinical patient scenario considering DDRi variance. RESULTS: UNIVERSE tests well against the applied benchmarks. While in vitro survival curves were predicted with an R2 > 0.92, deviations from in vivo RBE data were less than 5.6% The conducted paradigmatic patient plan study implies a markedly reduced significance of DDRi based radiosensitivity variability in CIRT (13% change of D 50 ${{D}_{50}}$ in target) compared to conventional radiotherapy (62%) and that boosting the LET within the target further amplifies this robustness of CIRT (8%). In the case of heightened tumor radiosensitivity, a dose de-escalation strategy for photons allows a reduction of the maximum effective dose within the normal tissue (NT) from a D 2 ${{D}_2}$ of 2.65 to 1.64 Gy, which lies below the level found for CIRT ( D 2 ${{D}_2}$  = 2.41 Gy) for the analyzed plan and parameters. However, even after de-escalation, the integral effective dose in the NT is found to be substantially higher for conventional radiotherapy in comparison to CIRT ( D m e a n ${{D}_{mean}}$ of 0.75, 0.46, and 0.24 Gy for the conventional plan, its de-escalation and CIRT, respectively). CONCLUSIONS: The framework offers adequate predictions of in vitro and in vivo radiation effects of CIRT while allowing the consideration of DRRi based solely on parameters derived from photon data. The results of the patient planning study underline the potential of CIRT to minimize important sources of interpatient divergence in therapy outcome, especially when combined with techniques that allow to maximize the LET within the tumor. Despite the potential of de-escalation strategies for conventional radiotherapy to reduce the maximum effective dose in the NT, CIRT appears to remain a more favorable option due to its ability to reduce the integral effective dose within the NT.


Assuntos
Dano ao DNA , Reparo do DNA , Radioterapia com Íons Pesados , Tolerância a Radiação , Humanos , Reparo do DNA/efeitos da radiação , Modelos Biológicos , Transferência Linear de Energia
2.
Cancers (Basel) ; 16(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38672579

RESUMO

BACKGROUND: Pancreatic cancer is one of the most aggressive and lethal cancers. New treatment strategies are highly warranted. Particle radiotherapy could offer a way to overcome the radioresistant nature of pancreatic cancer because of its biological and physical characteristics. Within particles, helium ions represent an attractive therapy option to achieve the highest possible conformity while at the same time protecting the surrounding normal tissue. The aim of this study was to evaluate the cytotoxic efficacy of helium ion irradiation in pancreatic cancer in vitro. METHODS: Human pancreatic cancer cell lines AsPC-1, BxPC-3 and Panc-1 were irradiated with photons and helium ions at various doses and treated with gemcitabine. Photon irradiation was performed with a biological cabin X-ray irradiator, and helium ion irradiation was performed with a spread-out Bragg peak using the raster scanning technique at the Heidelberg Ion Beam Therapy Center (HIT). The cytotoxic effect on pancreatic cancer cells was measured with clonogenic survival. The survival curves were compared to the predicted curves that were calculated via the modified microdosimetric kinetic model (mMKM). RESULTS: The experimental relative biological effectiveness (RBE) of helium ion irradiation ranged from 1.0 to 1.7. The predicted survival curves obtained via mMKM calculations matched the experimental survival curves. Mainly additive cytotoxic effects were observed for the cell lines AsPC-1, BxPC-3 and Panc-1. CONCLUSION: Our results demonstrate the cytotoxic efficacy of helium ion radiotherapy in pancreatic cancer in vitro as well as the capability of mMKM calculation and its value for biological plan optimization in helium ion therapy for pancreatic cancer. A combined treatment of helium irradiation and chemotherapy with gemcitabine leads to mainly additive cytotoxic effects in pancreatic cancer cell lines. The data generated in this study may serve as the radiobiological basis for future experimental and clinical works using helium ion radiotherapy in pancreatic cancer treatment.

3.
Dent Res J (Isfahan) ; 21: 7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425318

RESUMO

Background: This review aims to perform a complete evaluation of the impact of photobiomodulation (PMB) on postoperative endodontic pain. Materials and Methods: The PRISMA checklist was used to perform this systematic review. The electronic databases were searched, including Google Scholar, PubMed, and Embase. Sixty-three papers were obtained through a main electronic search and a hand search. Nine trials met the criteria after screening the titles, abstracts, and/or full texts. Results: Seven out of nine studies showed that PMB has a significant impact on relieving postoperative endodontic pain, with no statistically significant difference in the severity of pain between the laser and control groups in the two remaining studies. In addition, eight studies showed no adverse effects, indicating that we can remove the adverse effects of drugs such as nonsteroidal anti-inflammatory drugs. However, one study showed evidence of the consequences of PMB application on teeth with symptomatic irreversible pulpitis. Therefore, it can be concluded that PMB should not be used in teeth with pain because of irreversible pulpitis. Conclusion: Although there is some understanding from a cellular viewpoint of the effects of PMB, there is still some uncertainty about whether these cell-level modifications impact reducing the postendodontic pain.

4.
J Neurooncol ; 167(1): 89-97, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376766

RESUMO

PURPOSE: Glioblastomas (GBM) with subventricular zone (SVZ) contact have previously been associated with a specific epigenetic fingerprint. We aim to validate a reported bulk methylation signature to determine SVZ contact. METHODS: Methylation array analysis was performed on IDHwt GBM patients treated at our institution. The v11b4 classifier was used to ensure the inclusion of only receptor tyrosine kinase (RTK) I, II, and mesenchymal (MES) subtypes. Methylation-based assignment (SVZM ±) was performed using hierarchical cluster analysis. Magnetic resonance imaging (MRI) (T1ce) was independently reviewed for SVZ contact by three experienced readers. RESULTS: Sixty-five of 70 samples were classified as RTK I, II, and MES. Full T1ce MRI-based rater consensus was observed in 54 cases, which were retained for further analysis. Epigenetic SVZM classification and SVZ were strongly associated (OR: 15.0, p = 0.003). Thirteen of fourteen differential CpGs were located in the previously described differentially methylated LRBA/MAB21L2 locus. SVZ + tumors were linked to shorter OS (hazard ratio (HR): 3.80, p = 0.02) than SVZM + at earlier time points (time-dependency of SVZM, p < 0.05). Considering the SVZ consensus as the ground truth, SVZM classification yields a sensitivity of 96.6%, specificity of 36.0%, positive predictive value (PPV) of 63.6%, and negative predictive value (NPV) of 90.0%. CONCLUSION: Herein, we validated the specific epigenetic signature in GBM in the vicinity of the SVZ and highlighted the importance of methylation of a part of the LRBA/MAB21L2 gene locus. Whether SVZM can replace MRI-based SVZ assignment as a prognostic and diagnostic tool will require prospective studies of large, homogeneous cohorts.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Estudos Prospectivos , Metilação , Proteínas Adaptadoras de Transdução de Sinal , Proteínas do Olho , Peptídeos e Proteínas de Sinalização Intracelular
5.
Artigo em Inglês | MEDLINE | ID: mdl-38423224

RESUMO

PURPOSE: Recent experimental studies and clinical trial results might indicate that-at least for some indications-continued use of the mechanistic model for relative biological effectiveness (RBE) applied at carbon ion therapy facilities in Europe for several decades (LEM-I) may be unwarranted. We present a novel clinical framework for prostate cancer treatment planning and tumor control probability (TCP) prediction based on the modified microdosimetric kinetic model (mMKM) for particle therapy. METHODS AND MATERIALS: Treatment plans of 91 patients with prostate tumors (proton: 46, carbon ions: 45) applying 66 GyRBE [RBE = 1.1 for protons and LEM-I, (α/ß)x = 2.0 Gy, for carbon ions] in 20 fractions were recalculated using mMKM [(α/ß)x = 3.1 Gy]). Based solely on the response data of photon-irradiated patient groups stratified according to risk and usage of androgen deprivation therapy, we derived parameters for an mMKM-based Poisson-TCP model. Subsequently, new carbon and helium ion plans, adhering to prescribed biological dose criteria, were generated. These were systematically compared with the clinical experience of Japanese centers employing an analogous fractionation scheme and existing proton plans. RESULTS: mMKM predictions suggested significant biological dose deviation between the proton and carbon ion arms. Patients irradiated with protons received (3.25 ± 0.08) GyRBEmMKM/Fx, whereas patients treated with carbon ions received(2.51 ± 0.05) GyRBEmMKM/Fx. TCP predictions were (86 ± 3)% for protons and (52 ± 4)% for carbon ions, matching the clinical outcome of 85% and 50%. Newly optimized carbon ion plans, guided by the mMKM/TCP model, effectively replicated clinical data from Japanese centers. Using mMKM, helium ions exhibited similar target coverage as proton and carbon ions and improved rectum and bladder sparing compared with proton. CONCLUSIONS: Our mMKM-based model for prostate cancer treatment planning and TCP prediction was validated against clinical data for proton and carbon ion therapy, and its application was extended to helium ion therapy. Based on the data presented in this work, mMKM seems to be a good candidate for clinical biological calculations in carbon ion therapy for prostate cancer.

6.
Lancet Oncol ; 25(3): 400-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423052

RESUMO

BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.


Assuntos
Aprendizado Profundo , Glioblastoma , Humanos , Inteligência Artificial , Biomarcadores , Estudos de Coortes , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos
7.
Cancers (Basel) ; 16(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254899

RESUMO

Proton therapy presents a promising modality for treating left-sided breast cancer due to its unique dose distribution. Helium ions provide increased conformality thanks to a reduced lateral scattering. Consequently, the potential clinical benefit of both techniques was explored. An explorative treatment planning study involving ten patients, previously treated with VMAT (Volumetric Modulated Arc Therapy) for 50 Gy in 25 fractions for locally advanced, node-positive breast cancer, was carried out using proton pencil beam therapy with a fixed relative biological effectiveness (RBE) of 1.1 and helium therapy with a variable RBE described by the mMKM (modified microdosimetric kinetic model). Results indicated that target coverage was improved with particle therapy for both the clinical target volume and especially the internal mammary lymph nodes compared to VMAT. Median dose value analysis revealed that proton and helium plans provided lower dose on the left anterior descending artery (LAD), heart, lungs and right breast than VMAT. Notably, helium therapy exhibited improved ipsilateral lung sparing over protons. Employing NTCP models as available in the literature, helium therapy showed a lower probability of grade ≤ 2 radiation pneumonitis (22% for photons, 5% for protons and 2% for helium ions), while both proton and helium ions reduce the probability of major coronary events with respect to VMAT.

8.
Radiother Oncol ; 191: 110055, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109944

RESUMO

PURPOSE: To assess the robustness of prognostic biomarkers and molecular tumour subtypes developed for patients with head and neck squamous cell carcinoma (HNSCC) on cell-line derived HNSCC xenograft models, and to develop a novel biomarker signature by combining xenograft and patient datasets. MATERIALS AND METHODS: Mice bearing xenografts (n = 59) of ten HNSCC cell lines and a retrospective, multicentre patient cohort (n = 242) of the German Cancer Consortium-Radiation Oncology Group (DKTK-ROG) were included. All patients received postoperative radiochemotherapy (PORT-C). Gene expression analysis was conducted using GeneChip Human Transcriptome Arrays. Xenografts were stratified based on their molecular subtypes and previously established gene classifiers. The dose to control 50 % of tumours (TCD50) was compared between these groups. Using differential gene expression analyses combining xenograft and patient data, a gene signature was developed to define risk groups for the primary endpoint loco-regional control (LRC). RESULTS: Tumours of mesenchymal subtype were characterized by a higher TCD50 (xenografts, p < 0.001) and lower LRC (patients, p < 0.001) compared to the other subtypes. Similar to previously published patient data, hypoxia- and radioresistance-related gene signatures were associated with high TCD50 values. A 2-gene signature (FN1, SERPINE1) was developed that was prognostic for TCD50 (xenografts, p < 0.001) and for patient outcome in independent validation (LRC: p = 0.007). CONCLUSION: Genetic prognosticators of outcome for patients after PORT-C and subcutaneous xenografts after primary clinically relevant irradiation show similarity. The identified robust 2-gene signature may help to guide patient stratification, after prospective validation. Thus, xenografts remain a valuable resource for translational research towards the development of individualized radiotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Xenoenxertos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Estudos Retrospectivos , Prognóstico
9.
Clin Cancer Res ; 29(22): 4685-4697, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37682326

RESUMO

PURPOSE: Targeting immunosuppressive and pro-tumorigenic glioblastoma (GBM)-associated macrophages and microglial cells (GAM) has great potential to improve patient outcomes. Colony-stimulating factor-1 receptor (CSF1R) has emerged as a promising target for reprograming anti-inflammatory M2-like GAMs. However, treatment data on patient-derived, tumor-educated GAMs and their influence on the adaptive immunity are lacking. EXPERIMENTAL DESIGN: CD11b+-GAMs freshly isolated from patient tumors were treated with CSF1R-targeting drugs PLX3397, BLZ945, and GW2580. Phenotypical changes upon treatment were assessed using RNA sequencing, flow cytometry, and cytokine quantification. Functional analyses included inducible nitric oxide synthase activity, phagocytosis, transmigration, and autologous tumor cell killing assays. Antitumor effects and changes in GAM activation were confirmed in a complex patient-derived 3D tumor organoid model serving as a tumor avatar. RESULTS: The most effective reprogramming of GAMs was observed upon GW2580 treatment, which led to the downregulation of M2-related markers, IL6, IL10, ERK1/2, and MAPK signaling pathways, while M1-like markers, gene set enrichment indicating activated MHC-II presentation, phagocytosis, and T-cell killing were substantially increased. Moreover, treatment of patient-derived GBM organoids with GW2580 confirmed successful reprogramming, resulting in impaired tumor cell proliferation. In line with its failure in clinical trials, PLX3397 was ineffective in our analysis. CONCLUSIONS: This comparative analysis of CSF1R-targeting drugs on patient-derived GAMs and human GBM avatars identified GW2580 as the most powerful inhibitor with the ability to polarize immunosuppressive GAMs to a proinflammatory phenotype, supporting antitumor T-cell responses while also exerting a direct antitumor effect. These data indicate that GW2580 could be an important pillar in future therapies for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Microglia/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Macrófagos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
10.
Radiother Oncol ; 188: 109872, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634764

RESUMO

PURPOSE: To analyze the dose objectives and constraints applied at the prospective phase II PACK-study at Heidelberg ion therapy center (HIT) for different radiobiological models. METHODS: Treatment plans of 14 patients from the PACK-study were analyzed and recomputed in terms of physical, biological dose and dose-averaged linear energy transfer (LETd). Both LEM-I (local effect model 1) and the adapted NIRS-MKM (microdosimetric kinetic model), were used for relative biological effectiveness (RBE)-weighted dose calculations (DBio|HIT and DBio|NIRS). A new constraint to the gastrointestinal (GI) tract was derived from the National Institute of Radiological Science (NIRS) clinical experience and considered for plan reoptimization (DBio|NIRS-const_48Gy and DBio|NIRS-const_50.4Gy). The Lyman-Kutcher-Burman (LKB) model of Normal Tissue Complication Probability (NTCP) for GI toxicity endpoints was computed. Furthermore, the computed LETd distribution was evaluated and correlated with Local Control (LC). RESULTS: Only two patients showed a LETd98% in the GTV greater than 44 keV/µm. A HIT-dose constraint to the GI of [Formula: see text] was derived from the NIRS experience, in alternative to the standard at HIT Dmax = 45.6 GyRBEHIT. In comparison with the original DBio|HIT,DBio|NIRS-const_48GyandDBio|NIRS-const_50.4Gy resulted in an increase in the ITV's D98% of 8.7% and 11.3%. The NTCP calculation resulted in a probability for gastrointestinal bleeding of 4.5%, 12.3% and 13.0%, for DBio|NIRS, DBio|NIRS-const_48Gy and DBio|NIRS-const_50.4Gy, respectively. CONCLUSION: The results indicate that the current standards applied at HIT for CIRT closely align with the Japanese experience. However, to enhance tumor coverage, a more relaxed constraint on the GI tract may be considered. As the PACK-trial progresses, further analyses of various clinical endpoints are anticipated.

11.
Dent Res J (Isfahan) ; 20: 44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180689

RESUMO

Background: This study aimed to compare the success rate of inferior alveolar nerve (IAN) anesthesia in the mandibular first molars with symptomatic irreversible pulpitis using two anesthetic solutions of prilocaine and mepivacaine. Materials and Methods: The current randomized controlled clinical trial was conducted on 100 patients in two groups (n = 50). Standard injection of IAN block (IANB) was performed using two cartridges of 3% mepivacaine plain in the first group and using two cartridges of 3% prilocaine with 0.03 IU felypressin in the second group. Fifteen minutes after injection, the patients were asked about lip anesthesia. In case of a positive answer, the tooth was isolated with a rubber dam. Success was defined as no or mild pain on the basis of the visual analog scale recording upon access cavity preparation, entry into the pulp chamber, and initial instrumentation. Data were analyzed with SPSS 17 using the Chi-square test, and P < 0.05 was set as statistically significant. Results: The patients' pain severities during the three stages were significantly different (P = 0.001, 0.0001, and 0.001, respectively). The success rate of IANB during access cavity preparation was 88% with prilocaine and 68% with mepivacaine. This rate during entry into the pulp chamber was 78% and 24%, respectively, which was 3.25 times higher with prilocaine than mepivacaine. The success rates during instrumentation were 32% and 10%, respectively, which was 3.2 times higher with prilocaine than mepivacaine. Conclusion: The success rate of IANB in the teeth with symptomatic irreversible pulpitis was higher using 3% prilocaine with felypressin than using 3% mepivacaine.

12.
Clin Cancer Res ; 29(16): 3051-3064, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058257

RESUMO

PURPOSE: Tumor hypoxia is a paradigmatic negative prognosticator of treatment resistance in head and neck squamous cell carcinoma (HNSCC). The lack of robust and reliable hypoxia classifiers limits the adaptation of stratified therapies. We hypothesized that the tumor DNA methylation landscape might indicate epigenetic reprogramming induced by chronic intratumoral hypoxia. EXPERIMENTAL DESIGN: A DNA-methylome-based tumor hypoxia classifier (Hypoxia-M) was trained in the TCGA (The Cancer Genome Atlas)-HNSCC cohort based on matched assignments using gene expression-based signatures of hypoxia (Hypoxia-GES). Hypoxia-M was validated in a multicenter DKTK-ROG trial consisting of human papillomavirus (HPV)-negative patients with HNSCC treated with primary radiochemotherapy (RCHT). RESULTS: Although hypoxia-GES failed to stratify patients in the DKTK-ROG, Hypoxia-M was independently prognostic for local recurrence (HR, 4.3; P = 0.001) and overall survival (HR, 2.34; P = 0.03) but not distant metastasis after RCHT in both cohorts. Hypoxia-M status was inversely associated with CD8 T-cell infiltration in both cohorts. Hypoxia-M was further prognostic in the TCGA-PanCancer cohort (HR, 1.83; P = 0.04), underscoring the breadth of this classifier for predicting tumor hypoxia status. CONCLUSIONS: Our findings highlight an unexplored avenue for DNA methylation-based classifiers as biomarkers of tumoral hypoxia for identifying high-risk features in patients with HNSCC tumors. See related commentary by Heft Neal and Brenner, p. 2954.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/mortalidade , Hipóxia Tumoral/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Epigenoma , Recidiva Local de Neoplasia/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Prognóstico , Quimiorradioterapia , Hipóxia/genética , DNA
13.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982185

RESUMO

Reports of concurrent sparing of normal tissue and iso-effective treatment of tumors at ultra-high dose-rates (uHDR) have fueled the growing field of FLASH radiotherapy. However, iso-effectiveness in tumors is often deduced from the absence of a significant difference in their growth kinetics. In a model-based analysis, we investigate the meaningfulness of these indications for the clinical treatment outcome. The predictions of a previously benchmarked model of uHDR sparing in the "UNIfied and VERSatile bio response Engine" (UNIVERSE) are combined with existing models of tumor volume kinetics as well as tumor control probability (TCP) and compared to experimental data. The potential TCP of FLASH radiotherapy is investigated by varying the assumed dose-rate, fractionation schemes and oxygen concentration in the target. The developed framework describes the reported tumor growth kinetics appropriately, indicating that sparing effects could be present in the tumor but might be too small to be detected with the number of animals used. The TCP predictions show the possibility of substantial loss of treatment efficacy for FLASH radiotherapy depending on several variables, including the fractionation scheme, oxygen level, and DNA repair kinetics. The possible loss of TCP should be seriously considered when assessing the clinical viability of FLASH treatments.


Assuntos
Neoplasias , Humanos , Dosagem Radioterapêutica , Neoplasias/radioterapia , Probabilidade , Fracionamento da Dose de Radiação , Planejamento da Radioterapia Assistida por Computador
14.
Cancers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980707

RESUMO

BACKGROUND: MR image classification in datasets collected from multiple sources is complicated by inconsistent and missing DICOM metadata. Therefore, we aimed to establish a method for the efficient automatic classification of MR brain sequences. METHODS: Deep convolutional neural networks (DCNN) were trained as one-vs-all classifiers to differentiate between six classes: T1 weighted (w), contrast-enhanced T1w, T2w, T2w-FLAIR, ADC, and SWI. Each classifier yields a probability, allowing threshold-based and relative probability assignment while excluding images with low probability (label: unknown, open-set recognition problem). Data from three high-grade glioma (HGG) cohorts was assessed; C1 (320 patients, 20,101 MRI images) was used for training, while C2 (197, 11,333) and C3 (256, 3522) were for testing. Two raters manually checked images through an interactive labeling tool. Finally, MR-Class' added value was evaluated via radiomics model performance for progression-free survival (PFS) prediction in C2, utilizing the concordance index (C-I). RESULTS: Approximately 10% of annotation errors were observed in each cohort between the DICOM series descriptions and the derived labels. MR-Class accuracy was 96.7% [95% Cl: 95.8, 97.3] for C2 and 94.4% [93.6, 96.1] for C3. A total of 620 images were misclassified; manual assessment of those frequently showed motion artifacts or alterations of anatomy by large tumors. Implementation of MR-Class increased the PFS model C-I by 14.6% on average, compared to a model trained without MR-Class. CONCLUSIONS: We provide a DCNN-based method for the sequence classification of brain MR images and demonstrate its usability in two independent HGG datasets.

15.
Cancers (Basel) ; 15(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36765922

RESUMO

PURPOSE: This study investigates the impact of different intensity normalization (IN) methods on the overall survival (OS) radiomics models' performance of MR sequences in primary (pHGG) and recurrent high-grade glioma (rHGG). METHODS: MR scans acquired before radiotherapy were retrieved from two independent cohorts (rHGG C1: 197, pHGG C2: 141) from multiple scanners (15, 14). The sequences are T1 weighted (w), contrast-enhanced T1w (T1wce), T2w, and T2w-FLAIR. Sequence-specific significant features (SF) associated with OS, extracted from the tumour volume, were derived after applying 15 different IN methods. Survival analyses were conducted using Cox proportional hazard (CPH) and Poisson regression (POI) models. A ranking score was assigned based on the 10-fold cross-validated (CV) concordance index (C-I), mean square error (MSE), and the Akaike information criterion (AICs), to evaluate the methods' performance. RESULTS: Scatter plots of the 10-CV C-I and MSE against the AIC showed an impact on the survival predictions between the IN methods and MR sequences (C1/C2 C-I range: 0.62-0.71/0.61-0.72, MSE range: 0.20-0.42/0.13-0.22). White stripe showed stable results for T1wce (C1/C2 C-I: 0.71/0.65, MSE: 0.21/0.14). Combat (0.68/0.62, 0.22/0.15) and histogram matching (HM, 0.67/0.64, 0.22/0.15) showed consistent prediction results for T2w models. They were also the top-performing methods for T1w in C2 (Combat: 0.67, 0.13; HM: 0.67, 0.13); however, only HM achieved high predictions in C1 (0.66, 0.22). After eliminating IN impacted SF using Spearman's rank-order correlation coefficient, a mean decrease in the C-I and MSE of 0.05 and 0.03 was observed in all four sequences. CONCLUSION: The IN method impacted the predictive power of survival models; thus, performance is sequence-dependent.

16.
Clin Cancer Res ; 29(1): 233-243, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36282277

RESUMO

PURPOSE: To date, there are no systemic treatment options for patients with recurrent or refractory meningioma. EXPERIMENTAL DESIGN: To identify effective drugs, we performed a large-scale drug screening using FDA-approved drugs on several meningioma cell lines. The impact of the top four compounds was assessed on cell viability, proliferation, colony formation, migration, and apoptosis. In addition, the antineoplastic effects of the selected drugs were validated in a heterotopic xenograft mouse model. RESULTS: Analyses of the viability of meningioma cells treated with 119 antineoplastic FDA-approved drugs resulted in categorization into sensitive and resistant drug-response groups based on the mean IC50 values and peak serum concentrations (Cmax) in patients. Eighty drugs, including 15 alkylating agents, 14 antimetabolites, and 13 tyrosine kinase inhibitors, were classified as resistant (IC50 > Cmax). The sensitive drug-response group (n = 29, IC50 < Cmax) included RNA/protein synthesis inhibitors, proteasome inhibitors, topoisomerase, tyrosine-kinase, and partial histone deacetylase and microtubule inhibitors. The IC50 value of the four most effective compounds (carfilzomib, omacetaxine, ixabepilone, and romidepsin) ranged from 0.12 to 9.5 nmol/L. Most of them caused cell-cycle arrest in the G2-M-phase and induced apoptosis. Furthermore, all drugs except romidepsin significantly inhibited tumor growth in vivo. The strongest antineoplastic effect was observed for ixabepilone, which reduced tumor volume by 86%. CONCLUSIONS: In summary, a large-scale drug screening provides a comprehensive insight into the anti-meningioma activities of FDA-approved drugs, and identified carfilzomib, omacetaxine, ixabepilone, and romidepsin as novel potent antineoplastic agents for the treatment of aggressive meningiomas. The most pronounced effects were observed with ixabepilone mandating for further clinical investigation.


Assuntos
Antineoplásicos , Neoplasias Meníngeas , Meningioma , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Mepesuccinato de Omacetaxina/farmacologia , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Aprovação de Drogas
17.
STAR Protoc ; 3(4): 101798, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36340882

RESUMO

We present a protocol for the biosensor Cell-Fit-HD4D. It enables long-term monitoring and correlation of single-cell fate with subcellular-deposited energy of ionizing radiation. Cell fate tracking using widefield time-lapse microscopy is uncoupled in time from confocal ion track imaging. Registration of both image acquisition steps allows precise ion track assignment to cells and correlation with cellular readouts. For complete details on the use and execution of this protocol, please refer to Niklas et al. (2022).


Assuntos
Técnicas Biossensoriais , Transferência Linear de Energia , Microscopia Confocal/métodos , Radiometria/métodos , Rastreamento de Células
18.
Front Oncol ; 12: 901390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203443

RESUMO

Background: Selective uptake of (18)F-fluoro-ethyl-tyrosine (18F-FET) is used in high-grade glioma (HGG) to assess tumor metabolic activity via positron emission tomography (PET). We aim to investigate its value for target volume definition, as a prognosticator, and associations with whole-blood transcriptome liquid biopsy (WBT lbx) for which we recently reported feasibility to mirror tumor characteristics and response to particle irradiation in recurrent HGG (rHGG). Methods: 18F-FET-PET data from n = 43 patients with primary glioblastoma (pGBM) and n = 33 patients with rHGG were assessed. pGBM patients were irradiated with photons and sequential proton/carbon boost, and rHGG patients were treated with carbon re-irradiation (CIR). WBT (Illumina HumanHT-12 Expression BeadChips) lbx was available for n = 9 patients from the rHGG cohort. PET isocontours (40%-70% SUVmax, 10% steps) and MRI-based treatment volumes (MRIvol) were compared using the conformity index (CI) (pGBM, n = 16; rHGG, n = 27). Associations with WBT lbx data were tested on gene expression level and inferred pathways activity scores (PROGENy) and from transcriptome estimated cell fractions (CIBERSORT, xCell). Results: In pGBM, median SUVmax was higher in PET acquired pre-radiotherapy (4.1, range (R) 1.5-7.8; n = 20) vs. during radiotherapy (3.3, R 1.5-5.7, n = 23; p = 0.03) and in non-resected (4.7, R 2.9-7.9; n = 11) vs. resected tumors (3.3, R 1.5-7.8, n = 32; p = 0.01). In rHGG, a trend toward higher SUVmax values in grade IV tumors was observed (p = 0.13). Median MRIvol was 32.34 (R 8.75-108.77) cm3 in pGBM (n = 16) and 20.77 (R 0.63-128.44) cm3 in rHGG patients (n = 27). The highest median CI was observed for 40% (pGBM, 0.31) and 50% (rHGG, 0.43, all tumors) isodose, with 70% (40%) isodose in grade III (IV) rHGG tumors (median CI, 0.38 and 0.49). High SUVmax was linked to shorter survival in pGBM (>3.3, p = 0.001, OR 6.0 [2.1-17.4]) and rHGG (>2.8, p = 0.02, OR 4.1 [1.2-13.9]). SUVmax showed associations with inferred monocyte fractions, hypoxia, and TGFbeta pathway activity and links to immune checkpoint gene expression from WBT lbx. Conclusion: The benefits of 18F-FET-PET imaging on gross tumor volume (GTV) definition for particle radiotherapy warrant further evaluation. SUVmax might assist in prognostic stratification of HGG patients for particle radiotherapy, highlights heterogeneity in rHGG, and is positively associated with unfavorable signatures in peripheral whole-blood transcriptomes.

19.
Cancer Lett ; 550: 215928, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183858

RESUMO

Radiotherapy can act as an in situ vaccine, activating preventive tumor-specific immune responses in patients. Although carbon ion radiotherapy has superior biophysical properties over conventional photon irradiation, the immunological effects induced by this radiation type are poorly understood. Multiple strategies combining radiotherapy with immune checkpoint inhibition (radioimmunotherapy) to enhance antitumor immunity have been described; however, immune cell composition in tumors following radioimmunotherapy with carbon ions remains poorly explored. We developed a bilateral tumor model based on time-shifted subcutaneous injection of murine Her2+ EO771 tumor cells into immune-competent mice followed by selective irradiation of the primary tumor. αCTLA4-, but not αPD-L1-based radioimmunotherapy, induced complete tumor rejection and mediated the eradication of even non-irradiated, distant tumors. Cured mice were protected against the EO771 rechallenge, indicating long-lasting, tumor-specific immunological memory. Single-cell RNA sequencing and flow cytometric analyses of irradiated tumors revealed activation of NK cells and distinct tumor-associated macrophage clusters with upregulated expression of TNF and IL1 responsive genes. Distant tumors in the irradiated mice showed higher frequencies of naïve T cells activated upon the combination with CTLA4 blockade. Thus, radioimmunotherapy with carbon ions plus CTLA4 inhibition reshapes the tumor-infiltrating immune cell composition and can induce complete rejection even of non-irradiated tumors. Our data suggest combining radiotherapy approaches with CTLA4 blockade to achieve durable antitumor immunity. Evaluation of future radioimmunotherapy approaches should not be restricted to immunological impact at the irradiation site but should also consider systemic immunological effects on non-irradiated tumors.


Assuntos
Radioterapia com Íons Pesados , Inibidores de Checkpoint Imunológico , Animais , Antígeno CTLA-4 , Carbono , Linhagem Celular Tumoral , Memória Imunológica , Camundongos
20.
Neurooncol Adv ; 4(1): vdac098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919070

RESUMO

Background: Targeted immunotherapies are of growing interest in the treatment of various cancers. B7 homolog 3 protein (B7-H3), a member of the co-stimulatory/-inhibitory B7-family, exerts immunosuppressive and pro-tumorigenic functions in various cancer types and is under evaluation in ongoing clinical trials. Unfortunately, interaction partner(s) remain unknown which restricts the druggability. Methods: Aiming to identify potential binding partner(s) of B7-H3, a yeast two-hybrid and a mass spectrometry screen were performed. Potential candidates were evaluated by bimolecular fluorescence complementation (BiFC) assay, co-immunoprecipitation (co-IP), and functionally in a 3H-thymidine proliferation assay of Jurkat cells, a T-cell lineage cell line. Prognostic value of angio-associated migratory cell protein (AAMP) and B7-H3 expression was evaluated in isocitrate dehydrogenase 1 wildtype (IDH1wt) glioblastoma (GBM) patients from The Cancer Genome Atlas (TCGA)-GBM cohort. Results: Of the screening candidates, CD164, AAMP, PTPRA, and SLAMF7 could be substantiated via BiFC. AAMP binding could be further confirmed via co-IP and on a functional level. AAMP was ubiquitously expressed in glioma cells, immune cells, and glioma tissue, but did not correlate with glioma grade. Finally, an interaction between AAMP and B7-H3 could be observed on expression level, hinting toward a combined synergistic effect. Conclusions: AAMP was identified as a novel interaction partner of B7-H3, opening new possibilities to create a targeted therapy against the pro-tumorigenic costimulatory protein B7-H3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...