Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; : e202400001, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747690

RESUMO

Various wound dressings have been developed so far for wound healing, but most of them are ineffective in properly reestablishing the skin's structure, which increases infection risks and dehydration. Electrospun membranes are particularly interesting for wound dressing applications because they mimic the extracellular matrix of healthy skin. In this study, a potential wound healing platform capable of inducing synergistic antibacterial and antioxidation activities was developed by incorporating bio-active rosmarinic acid-hydroxyapatite hybrid (HAP-RA) with different contents (0.5, 1, and 1.5 wt.%) into the electrospun polyamide 6 (PA6) nanofibers. Then, polyethylene glycol (PEG) was introduced to the nanofibrous composite to improve the biocompatibility and biodegradability of the dressing. The results indicated that the hydrophilicity, water uptake, biodegradability, and mechanical properties of the obtained PA6/PEG/HAP-RA nanofibrous composite enhanced at 1 wt.% of HAP-RA. The nanofibrous composite had excellent antibacterial activity. The antioxidation potential of the samples was assessed in vitro. The MTT assay performed on the L929 cell line confirmed the positive effects of the nanofibrous scaffold on cell viability and proliferation. According to the results, the PA6/PEG/HAP-RA nanofibrous composite showed the desirable physiochemical and biological properties besides antibacterial and antioxidative capabilities, making it a promising candidate for further studies in wound healing applications.

2.
J Colloid Interface Sci ; 663: 1035-1051, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452545

RESUMO

Herein, for the first time, we reported the synthesis of a novel Z-scheme CoxNi1-xTiO3/CdS (x = 0.5) heterojunction photocatalyst and the investigation of its visible-light-driven photocatalytic performance toward degradation of methylene blue (MB). The developed photocatalyst was structurally characterized by applying X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), differential reflectance spectroscopy (DRS), and photoluminescence (PL) techniques. The results indicated the formation of a highly porous structure with improved visible light adsorption capacity, favorable for the catalytic activity. At an optimum condition of 10 mg/L of MB and 300 mg/L of catalyst, the ternary photocatalyst demonstrated a MB removal efficiency of 99 % after 75 min of the treatment process. The radical trapping experiments unveiled that hydroxyl and superoxide radicals were two main reactive species formed under visible light, while the valance holes possessed an insignificant role. The synergetic impact of the CoxNi1-xTiO3 (x = 0.5) and CdS on the photodegradation of MB over the as-prepared CoxNi1-xTiO3/CdS (x = 0.5) photocatalyst through Z-scheme photocatalysis was indicated by the results of the mechanism studies. The percentage impact of the treatment time, MB concentration, the ratio of CoxNi1-xTiO3/CdS (x = 0.5), and the dosage of catalyst using analysis of the CCD modeling was obtained as 47.04, 16.67, 7.22 and 0.87 %, respectively. Furthermore, the as-synthesized photocatalyst possessed high recyclability and photostability with only a 3 % decline in activity after four repetitive cycles.

3.
Int J Biol Macromol ; 265(Pt 1): 130901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490383

RESUMO

This study introduces a starch/PVA/g-C3N4 nanocarrier hydrogel for pH-sensitive DOX delivery in breast cancer. DOX was loaded into the nanocarrier with 44.75 % loading efficiency and 88 % Entrapment Efficiency. The release of DOX from the starch/PVA/g-C3N4 hydrogel was pH-sensitive: DOX was released faster in the acidic environment pertinent to cancer tumors (with a pH level of 5.4) than in the surrounding regular tissue environment carrying a more neutral environment (pH 7.4). The release kinetics analysis, encompassing zero-order, first-order, Higuchi, and Korsmeyer-Peppas models, revealed significant fitting with the Higuchi model at both pH 5.4 (R2 = 0.99, K = 9.89) and pH 7.4 (R2 = 0.99, K = 5.70) levels. Finally, we found that hydrogel was less damaging to healthy cells and more specific to apoptotic cells than the drug's free form. The starch/PVA/g-C3N4 hydrogel had low toxicity for both normal cells and breast cancer cells, whereas DOX loaded into the starch/PVA/g-C3N4 hydrogel had higher toxicity for cancer cells than the DOX-only control samples, and led to specific high apoptosis for cancer cells. The study suggests that DOX can be loaded into a starch/PVA/g-C3N4 hydrogel to improve the specificity of the drug's release in cancer tumors or in vitro breast cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Hidrogéis/uso terapêutico , Amido/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Concentração de Íons de Hidrogênio , Portadores de Fármacos/uso terapêutico
4.
J Biomed Mater Res B Appl Biomater ; 112(1): e35370, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247254

RESUMO

Hyaluronic acid (HA) and chitosan (CS), as natural biomaterials, display excellent biocompatibility and stimulate the growth and proliferation of fibroblasts. Furthermore, nylon 6 (N6) is a low-cost polymer with good compatibility with human tissues and high mechanical stability. In this study, HA and CS were applied to modify N6 nanofibrous mat (N6/HA/CS) for potential wound dressing. N6/HA/CS nanofibrous composite mats were developed using a simple one-step electrospinning technique at different CS concentrations of 1, 2, and 3 wt%. The results demonstrated that incorporating HA and CS into N6 resulted in increased hydrophilicity, as well as favorable physical and mechanical properties. In addition, the minimum inhibitory concentration and (MIC) optical density techniques were used to determine the antibacterial properties of N6/HA/CS nanofibrous composite mats, and the results demonstrated that the composites could markedly inhibit the growth of Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Because of its superior mechanical properties, substantial antimicrobial effects, and hydrophilic surface, N6/HA/CS at 2 wt% of CS (N6/HA/CS2) was chosen as the most suitable nanofibrous mat. The swelling, porosity, gel content, and in vitro degradation studies imply that N6/HA/CS2 nanofibrous composite mat has proper moisture retention and biodegradability. Furthermore, the N6/HA/CS2 nanofibrous composite mat was discovered to be nontoxic to L929 fibroblast cells and to even improve cell proliferation. Based on the findings, this research offers a simple and rapid method for creating material that could be utilized as prospective wound dressings in clinical environments.


Assuntos
Caprolactama/análogos & derivados , Quitosana , Nanofibras , Humanos , Quitosana/farmacologia , Ácido Hialurônico/farmacologia , Estudos Prospectivos , Bandagens , Antibacterianos/farmacologia , Escherichia coli , Polímeros
5.
Heliyon ; 10(1): e24073, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38283243

RESUMO

Adsorptive desulfurization of light fuels is sustainable due to its ambient operation and reusability of exhausted adsorbents. In this study, 1-(2-hydroxyethyl)-3-methylimidazolium dicyanamide [HEMIM][DCA] IL was synthesized and utilized to modify N-doped carbon nanotubes (CNTs) to produce N-CNT/[HEMIM][DCA] as a green hybrid adsorbent. The adsorbent was characterized using XRD, FE-SEM, FTIR, BET, and TGA. It was indicated that the N-CNT treatment with [HEMIM][DCA] IL resulted in decreased crystallinity with the cubic and rod-shaped morphology and harsh surfaces and curved edges. The absence of shifts or variations in FTIR peaks of starting materials and N-CNT/[HEMIM][DCA] suggested that neither component was affected by chemical interactions. The adsorption capacity of N-CNT and N-CNT/[HEMIM][DCA] was 54.3 mg/g and for 83.6 mg/g for 50 ppm BT, respectively. Saturated with BT, the adsorbent's performance was decreased at high BT concentrations. The adsorption isotherms provided an understanding of interactions of BT with sorbent surface which follows the Langmuir model for N-CNT/[HEMIM][DCA] and N-CNT. The kinetics of BT adsorption on N-CNT/[HEMIM][DCA] was fitted with second-order kinetic model with the decreased adsorption ratio over time due to pore saturation. 25 % reduction of the adsorption capacity was obtained after two recycling cycles of the adsorbent (62.5 mg/g). N-CNT/[HEMIM][DCA] showed good recyclability and potential as a promising BT adsorbent.

6.
Int J Biol Macromol ; 257(Pt 2): 128626, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056757

RESUMO

The common adverse effects of chemotherapy are the reason for the use of effective, natural drugs and targeted administration to specific areas. On the one hand, Quercetin (QC) has positive effects as a natural anticancer agent. On the other hand, Fe2O3, as nanoparticles (NP) with clinical properties and high porosity, can be a suitable carrier for drug loading and controlled release. In this study, QC was encapsulated in a synthesized Fe2O3/Starch/Polyvinyl alcohol nanocarrier (Fe2O3/S/PVA NC). Characterization of the NC was done by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), zeta potential and Dynamic light scattering (DLS). The percentage of drug loading (DLE) and encapsulation efficiency (EE) of QC in the NC containing Fe2O3 nanoparticles was 47 % and 86.50 %, respectively, while it was 36 % and 73 % in the NC without Fe2O3. QC profile release in acidic and natural mediums showed controlled release and pH dependency of the NC. Viability of L929 and HepG2 treated cells with the Fe2O3/S/PVA/QC was demonstrated by MTT staining which was in agreement with flow cytometry. The results show that Fe2O3/S/PVA is a suitable NC for the targeted delivery of QC as a drug against HepG2 cancer cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Álcool de Polivinil/química , Quercetina/farmacologia , Preparações de Ação Retardada , Hidrogéis/química , Amido , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Int Wound J ; 21(4): e14571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38111169

RESUMO

Platelet-rich fibrin (PRF), which is the rich source of growth factors, has been used as an efficient scaffold in tissue engineering and wound healing. In this study, tannic acid as a green cross-linker with different concentrations (0.5%, 1%, 5% and 10%) was used to improve the properties of PRF. The cross-linked gel scaffolds were evaluated by analyses such as scanning electron microscopy, Fourier transform infrared spectroscopy, swelling and degradation, mechanical strength, cell toxicity, cell adhesion and antibacterial test. The results showed that the scaffold structure changes by increasing cross-linker concentration. The swelling rate decreased from 49% to 5% for the samples without the cross-linker and with tannic acid (10%), respectively. The degradation percentage for the cross-linked samples was 8%, which showed a lower degradation rate than the non-cross-linked samples (63%). The mechanical strength of the scaffold with the cross-linker increased up to three times (Young's modulus for the non-cross linked and the cross-linked samples: 0.01 and 0.6 MPa, respectively). Cytotoxicity was not observed up to 10% cross-linker concentration. The cells proliferated well on the cross-linked scaffolds and also showed a good antibacterial effect. In general, tannic acid can improve the physical and mechanical properties of PRF without negatively affecting its biological properties.


Assuntos
Fibrina Rica em Plaquetas , Polifenóis , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Fibrina Rica em Plaquetas/metabolismo , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
8.
ACS Omega ; 8(44): 41363-41373, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970037

RESUMO

This article presents a comprehensive study of the development of a novel nanocomposite comprising core-shell Fe3O4@MCM-41 with superparamagnetic properties and hydroxyapatite (HAp). The nanocomposite serves as a pH-responsive nanocarrier, offering an efficient injectable dosage for teriparatide (PTH (1-34)) delivery. The aim is to address the limitations associated with drug-induced side effects, precautionary measures, and frequent injections. The nanocomposites, as prepared, were characterized using techniques including X-ray diffraction, Fourier transform infrared, zeta potential, dynamic light scattering, VSM, scanning electron microscopy, and transmission electron microscopy. The nanocomposites' average crystallite diameter was determined to be 27 ± 5 nm. The hydrodynamic size of the PTH (1-34)-loaded nanocarrier ranged from 357 to 495 nm, with a surface charge of -33 mV. The entrapment and loading efficiencies were determined to be 73% and 31%, respectively. All of these findings collectively affirm successful fabrication. Additionally, in vivo medication delivery was investigated using the HPLC method, mirroring the in vitro tests. Utilizing the dialysis approach, we demonstrated sustained-release behavior. PTH (1-34) diffusion increased as the pH decreased from 7.4 to 5.6. After 24 h, drug release was higher at acidic pH (88%) compared to normal pH (43%). The biocompatibility of the PTH (1-34)-loaded nanocarrier was assessed using the MTT assay employing the NIH3T3 and HEK-293 cell lines. The results demonstrated that the nanocarrier not only exhibited nontoxicity but also promoted cell proliferation and differentiation. In the in vivo test, the drug concentration reached 505 µg within 30 min of exposure to the magnetic field. Based on these findings, the Fe3O4@MCM-41/HAp/PTH (1-34) nanocomposite, in combination with a magnetic field, offers an efficient and biocompatible approach to enhance the therapeutic effect of osteogenesis and overcome drug limitations.

9.
Int J Biol Macromol ; 251: 126280, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591420

RESUMO

Curcumin (CUR) is among the most natural and effective antitumor drugs for cancer treatment. These drugs have low solubility and short half-lives that reduce their effectiveness in drug release systems. Herein, a hydrogel nanocarrier containing chitosan (CS), alumina (γ-Al2O3), and carbon quantum dots (CQDs) was prepared by the water-in-oil-in-water (W/O/W) double nanoemulsion method. DLS revealed a nanocarrier size of 227 nm, with a zeta potential of -37.8 mV, which corroborates its stability. FE-SEM showed its quasi-spherical shape, FT-IR and XRD confirmed the presence of all the components in the nanocomposite and gave information about the intermolecular interactions between them and the crystalline nature of the nanocarrier, respectively. The drug loading (48 %) and entrapment efficiency (86 %) were higher than those reported previously for other CUR nanocarriers. The drug release profile revealed a controlled and stable release, and a pH-sensitive behavior, with faster CUR release in an acid environment. The breast cancer cell line was examined by cytotoxicity and cell apoptosis analyses. The results showed that the slow release over time and the programmed cell death were due to interactions between CUR and the nanocarrier. Considering the results obtained herein, CS/γAl2O3/CQDs/CUR can be considered as a promising new nanosystem for tumor treatment.

10.
Polymers (Basel) ; 15(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37514522

RESUMO

Curcumin (CUR) has potent anticancer activities, and its bioformulations, including biodegradable polymers, are increasingly able to improve CUR's solubility, stability, and delivery to cancer cells. In this study, copolymers comprising poly (L-lactide)-poly (ethylene glycol)-poly (L-lactide) (PLA-PEG-PLA) and poly (ethylene glycol)-poly (L-lactide)-poly (ethylene glycol) (PEG-PLA-PEG) were designed and synthesized to assess and compare their CUR-delivery capacity and inhibitory potency on MCF-7 breast cancer cells. Molecular dynamics simulations and free energy analysis indicated that PLA-PEG-PLA has a higher propensity to interact with the cell membrane and more negative free energy, suggesting it is the better carrier for cell membrane penetration. To characterize the copolymer synthesis, Fourier transform-infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR) were employed, copolymer size was measured using dynamic light scattering (DLS), and their surface charge was determined by zeta potential analysis. Characterization indicated that the ring-opening polymerization (ROP) reaction was optimal for synthesizing high-quality polymers. Microspheres comprising the copolymers were then synthesized successfully. Of the two formulations, PLA-PEG-PLA experimentally exhibited better results, with an initial burst release of 17.5%, followed by a slow, constant release of the encapsulated drug up to 80%. PLA-PEG-PLA-CUR showed a significant increase in cell death in MCF-7 cancer cells (IC50 = 23.01 ± 0.85 µM) based on the MTT assay. These data were consistent with gene expression studies of Bax, Bcl2, and hTERT, which showed that PLA-PEG-PLA-CUR induced apoptosis more efficiently in these cells. Through the integration of nano-informatics and in vitro approaches, our study determined that PLA-PEG-PLA-CUR is an optimal system for delivering curcumin to inhibit cancer cells.

11.
Int J Pharm ; 642: 123207, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37419431

RESUMO

Endowing wound dressings with drug delivery capability is a suitable strategy to transfer medicinal compounds locally to damaged skin layers. These dressings are especially useful for accelerating the healing rate in the cases of long-term treatment, and adding more functionalities to the platform. In this study, a wound dressing composed of polyamide 6, hyaluronic acid, and curcumin-loaded halloysite nanotubes (PA6/HA/HNT@Cur) was designed and fabricated for wound healing applications. The physicochemical properties of this platform were investigated through Fourier-transform infrared spectroscopy and field-emission scanning electron microscopy. Moreover, wettability, tensile strength, swelling, and in vitro degradation were assessed. The HNT@Cur was incorporated in the fibers in three concentrations and 1 wt% was found as the optimum concentration yielding desirable structural and mechanical properties. The loading efficiency of Cur on HNT was calculated to be 43 ± 1.8%, and the release profiles and kinetics of nanocomposite were investigated at physiological and acidic pH. In vitro antibacterial and antioxidation studies showed that the PA6/HA/HNT@Cur mat had strong antibacterial and antioxidation activities against gram-positive and -negative pathogens and reactive oxygen species, respectively. Desirable cell compatibility of the mat was found through MTT assay against L292 cells up to 72 h. Finally, the efficacy of the designed wound dressing was evaluated in vivo; after 14 days, the results indicated that the wound size treated with the nanocomposite mat significantly decreased compared to the control sample. This study proposed a swift and straightforward method for developing materials that might be utilized as wound dressings in clinical settings.


Assuntos
Curcumina , Nanofibras , Nanotubos , Curcumina/farmacologia , Curcumina/química , Argila/química , Antioxidantes/farmacologia , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanotubos/química , Cicatrização
12.
Int J Biol Macromol ; 243: 125168, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270138

RESUMO

The field of nanotechnology has introduced novel prospects for drug delivery systems, which have the potential to supplant conventional chemotherapy with reduced adverse effects. Despite being a promising porous material, ZIF-8, a metal-organic framework, tends to agglomerate in water, which limits its applicability. In order to resolve this problem, we added ZIF-8 to hydrogels consisting of gelatin and carboxymethylcellulose. This improved their mechanical strength and stability while avoiding aggregation. We utilized double emulsions with the hydrogels' biological macromolecules to construct drug carriers with enhanced control over drug release. The nanocarriers were subjected to various analytical techniques for characterization, such as Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), zeta potential, and dynamic light scattering (DLS). The findings of our study revealed that the mean size of the produced nanocarriers were 250 nm, and their zeta potential was -40.1 mV, which suggests favorable stability. The synthesized nanocarriers were found to exhibit cytotoxicity towards cancer cells, as evidenced by the results of MTT assays and flow cytometry tests. The cell viability percentage was determined to be 55 % for the prepared nanomedicine versus 70 % for the free drug. In summary, our study illustrates that the integration of ZIF-8 into hydrogels produces drug delivery systems with improved characteristics. Furthermore, the prepared nanocarriers exhibit potential for future investigation and advancement.


Assuntos
Antineoplásicos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Carboximetilcelulose Sódica/química , Gelatina , Emulsões , Hidrogéis , Antineoplásicos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos
13.
Int J Biol Macromol ; 242(Pt 1): 124785, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169052

RESUMO

Curcumin (Cur) is a polyphenolic hydrophobic molecule with several biological uses, including cancer therapy. However, its widespread use in cancer treatment faces limitations due to its low solubility in acidic and neutral conditions, rapid removal from the circulatory system, and poor bioavailability. In order to overcome these challenges, a biocompatible and pH-sensitive carrier nanoplatform was designed for the specific delivery of curcumin to breast cancer cells. This nanocomposite containing polyacrylic acid (PAA), starch, and titanium dioxide (TiO2) was synthesized with a specific morphology through the water-in-oil-in-water green emulsification strategy. The nanocomposite structure was confirmed by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and field-emission scanning electrom microscopy (FE-SEM) imaging tests. The mean particle size of 151 nm for the PAA-Starch-TiO2 nanocomposite ensures specific entry into cancer cells and minimal damage to healthy cells. Loading efficiency (LE) and encapsulation efficiency (EE) for curcumin obtained 49.50 % and 87.25 %, which are desirable for a carrier nanoplatform. Compared to the physiological medium, the in-vitro release of curcumin was higher in the acidic conditions in all time intervals, which indicates the possibility of targeted drug release from the PAA-Starch-TiO2 nanocomposite around the tumor tissue. Furthermore, for better understanding of the release mechanism, the cumulative release data in both media were fitted with common mathematical kinetic models. Cytotoxicity tests against the MCF-7 cell line were performed using in vitro MTT and flow cytometry tests. The results showed that the PAA-Starch-TiO2 carrying Cur was more effective through increasing the bioavailability and controlled release of the drug compared to the free Cur. Also, the death of cancer cells in the presence of this nanocomposite compared to free Cur occurred mainly through the induction of apoptosis, which indicates the programmed death of cancer cells and the high efficiency of the designed nanocarrier.


Assuntos
Neoplasias da Mama , Curcumina , Nanocompostos , Nanopartículas , Humanos , Feminino , Curcumina/química , Amido , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Nanocompostos/química , Água , Portadores de Fármacos/química , Nanopartículas/química
14.
Int J Biol Macromol ; 242(Pt 3): 125134, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257532

RESUMO

A novel pH-sensitive nanocarrier containing chitosan (CS), polyacrylic acid (PAA), and graphitic carbon nitride (g-C3N4) was designed via water/oil/water (W/O/W) emulsification to administer curcumin (CUR) drug. g-C3N4 nanosheets with a high surface area and porous structure were produced via simple one-step pyrolysis process using thiourea as precursor, and incorporated into CS/PAA hydrogel. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the crystalline structure of the nanocarrier and the interactions between its components, respectively. Scanning electron microscopy (SEM) images revealed a spherical structure and confirmed the g-C3N4 impregnation into the CS/PAA matrix. Zeta potential and dynamic light scattering (DLS) provided information about the surface charge and average size distribution. High CUR loading and entrapment efficiencies were obtained, which were further improved upon addition of g-C3N4. The release kinetics of drug-loaded CS/PAA/g-C3N4 nanocomposites were investigated at pH = 5.4 and pH = 7.4, and the results showed an excellent controlled pH-sensitive release profile. Cell apoptosis and in vitro cytotoxicity were investigated using flow cytometry and MTT analyses. CS/PAA/g-C3N4/CUR resulted in the highest rate of apoptosis in MCF-7 breast cancer cells, demonstrating the excellent nanocomposite efficacy in eliminating cancerous cells. CS/PAA hydrogel coated with g-C3N4 shows great potential for pH-sensitive controlled drug release.


Assuntos
Neoplasias da Mama , Quitosana , Curcumina , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Curcumina/farmacologia , Curcumina/química , Quitosana/química , Células MCF-7 , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrogéis , Concentração de Íons de Hidrogênio
15.
Int J Biol Macromol ; 241: 124566, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100314

RESUMO

Nanocomposites are promising drug carriers to treat terminal cancers with few adverse effects. Herein, nanocomposite hydrogels composed of carboxymethyl cellulose (CMC)/starch/reduced graphene oxide (RGO) were synthesized via a green chemistry approach and then encapsulated in double nanoemulsions to act as pH-responsive delivery systems for curcumin, a potential antitumor drug. A water/oil/water nanoemulsion containing bitter almond oil served as a membrane surrounding the nanocarrier to control drug release. DLS and zeta potential measurements were used to estimate the size and confirm the stability of curcumin-loaded nanocarriers. The intermolecular interactions, crystalline structure and morphology of the nanocarriers were analyzed through FTIR spectroscopy, XRD and FESEM, respectively. The drug loading and entrapment efficiencies were significantly improved compared to previously reported curcumin delivery systems. In vitro release experiments demonstrated the pH-responsiveness of the nanocarriers and the faster curcumin release at a lower pH. The MTT assay revealed the increased toxicity of the nanocomposites against MCF-7 cancer cells compared to CMC, CMC/RGO or free curcumin. Apoptosis was detected in MCF-7 cells via flow cytometry tests. The results obtained herein support that the developed nanocarriers are stable, uniform and effective delivery systems for a sustained and pH-sensitive curcumin release.


Assuntos
Curcumina , Humanos , Curcumina/farmacologia , Curcumina/química , Carboximetilcelulose Sódica , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Amido , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
16.
ACS Appl Bio Mater ; 6(5): 1806-1815, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093754

RESUMO

An effective treatment for hormone-dependent breast cancer is chemotherapy using cytotoxic agents such as letrozole (LTZ). However, most anticancer drugs, including LTZ, are classified as class IV biopharmaceuticals, which are associated with low water solubility, poor bioavailability, and significant toxicity. As a result, developing a targeted delivery system for LTZ is critical for overcoming these challenges and limitations. Here, biodegradable LTZ-loaded nanocarriers were synthesized by solvent emulsification evaporation using nanomicelles prepared with dodecanol-polylactic acid-co-polyethylene glycol (DPLA-co-PEG). Furthermore, cancer cell-targeting folic acid (FA) was conjugated into the nanomicelles to achieve a more effective and safer cancer treatment. During our investigation, DPLA-co-PEG and DPLA-co-PEG-FA displayed a uniform and spherical morphology. The average diameters of DPLA-co-PEG and DPLA-co-PEG-FA nanomicelles were 86.5 and 241.3 nm, respectively. Our preliminary data suggest that both nanoformulations were cytocompatible, with ≥90% cell viability across all concentrations tested. In addition, the amphiphilic nature of the nanomicelles led to high drug loading and dispersion in water, resulting in the extended release of LTZ for up to 50 h. According to the Higuchi model, nanomicelles functionalized with FA have a greater potential for the controlled delivery of LTZ into target cells. This model was confirmed experimentally, as LTZ-containing DPLA-co-PEG-FA was significantly and specifically more cytotoxic (up to 90% cell death) toward MCF-7 cells, a hormone-dependent human breast cancer cell line, when compared to free LTZ and LTZ-containing DPLA-co-PEG. Furthermore, a half-maximal inhibitory concentration (IC50) of 87 ± 1 nM was achieved when MCF-7 cells were exposed to LTZ-containing DPLA-co-PEG-FA, whereas higher doses of 125 ± 2 and 100 ± 2 nM were required for free LTZ and LTZ-containing DPLA-co-PEG, respectively. Collectively, DPLA-co-PEG-FA represents a promising nanosized drug delivery system to target controllably the delivery of drugs such as chemotherapeutics.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Letrozol/uso terapêutico , Portadores de Fármacos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Hormônios/uso terapêutico , Ácido Fólico , Água
17.
Int J Biol Macromol ; 233: 123518, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773879

RESUMO

Electrospun nanofibers, as an innovative drug delivery system, provide selective, effective, and safe drug release. The present study aimed to fabricate nanofibers based on ß-cyclodextrin grafted chitosan (ß-CD-g-CS) macromolecules with incorporated drug via the blend electrospinning technique. The grafting of ß-CD onto chitosan (CS) was confirmed by FT-IR, 1H NMR, TGA, XRD, and EDX analysis. Indomethacin was encapsulated in the ß-CD-g-CS matrix as blend nanofibers using electrospinning in presence of polyvinyl alcohol (PVA). The SEM images revealed nanofibers with diameters at the nanoscale. The unique features of ß-CD-g-CS/PVA as drug delivery system were investigated using indomethacin as a model drug molecule. Controlled release of indomethacin from nanofibers was studied in PBS solution by measuring the absorbance by UV-Vis spectrophotometer. The drug release profile exhibited that the rate of drug release can be tailored by polymer type and changing the drug/polymer ratio. The physicomechanical properties of the developed nanofibers were analyzed by tensile strength and water contact angle. The results demonstrated that ß-CD-g-CS revealed enhanced wettability as well as favorable physicomechanical properties. In addition, the growth rate of the L929 cells on the CS and ß-CD-g-CS nanofibers was not significantly inhibited and even improved cell proliferation. These findings indicated that ß-CD-g-CS nanofibers could be appropriate as a smart drug delivery system for sustained release of indomethacin as an anti-inflammatory medicine in the wound healing and tissue engineering approaches in orthopedic applications.


Assuntos
Quitosana , Nanofibras , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Quitosana/química , Sistemas de Liberação de Medicamentos , Indometacina , Nanofibras/química , Polímeros , Álcool de Polivinil/química , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Camundongos , Linhagem Celular
18.
Curr Drug Deliv ; 20(10): 1569-1583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36239733

RESUMO

BACKGROUND: The skin is one of the most essential organs of the body that plays a vital role. Protecting the skin from damage is a critical challenge. Therefore, the ideal wound dressing that has antibacterial, mechanical, biodegradable, and non-toxic properties can protect the skin against injury and accelerate and heal the wound. OBJECTIVE: In this study, a nano-wound dressing is designed for the first time. This work is aimed to optimize and act as a dressing to speed up the wound healing process. METHODS: Graphene Oxide (GO) was produced by the hummer method. In the next step, GO-copper (Cu) nanohybrid was prepared, then GO-Cu -Curcumin (Cur) nanohybrid was synthesized. Using the electrospinning method, polyvinyl alcohol (PVA)/GO-Cu -Cur were spun, and finally, related analyses were performed to investigate the properties and synthesized chemicals. RESULTS: The results showed that the nanocomposite was synthesized correctly, and the diameter of the nanofibers was 328 nm. The use of PVA improved the mechanical properties. In addition, the wound dressing had biodegradable, antimicrobial, and non-toxic properties. The results of the scratch test and animal model showed that this nanocomposite accelerated wound healing and after 14 days showed 92.25% wound healing. CONCLUSION: The synthesized nanocomposite has the individual properties and characteristics of an ideal wound dressing and replaces traditional methods for wound healing.


Assuntos
Curcumina , Nanofibras , Nanopartículas , Animais , Álcool de Polivinil/química , Nanofibras/química , Curcumina/farmacologia , Curcumina/química , Cicatrização , Antibacterianos/química
19.
Biotechnol Prog ; 39(1): e3305, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36258667

RESUMO

In recent decades, magnetic nanoparticles modified with biocompatible polymers have been recognized as a suitable tool for treating breast cancer. The aim of this research was to evaluate the function of chitosan/agarose-functionalized Fe2 O3 nanoparticles on the MCF-7 breast cancer cell line and the expression of BCL2 and BAX genes. Free Fe2 O3 nanoparticles were prepared by hydrothermal method. FTIR, XRD, SEM, DLS, VSM, and zeta potential analyses determined the size and morphological characteristics of the synthesized nanoparticles. The effect of Fe2 O3 free nanoparticles and formulated Fe2 O3 nanoparticles on induction of apoptosis was studied by double-dye Annexin V-FITC and PI. Also, the gene expression results using the PCR method displayed that Fe2 O3 formulated nanoparticles induced BAX apoptosis by increasing the anti-apoptotic gene expression and decreasing the expression of pro-apoptotic gene BCL2, so the cell progresses to planned cell death. In addition, the results showed that the BAX/BCL2 ratio decreased significantly after treatment of MCF-7 cells with free Fe2 O3 nanoparticles, and the BAX/BCL2 ratio for Fe2 O3 formulated nanoparticles increased significantly. Also, to evaluate cell migration, the scratch test was performed, which showed a decrease in motility of MCF-7 cancer cells treated with Fe2 O3 nanoparticles formulated with chitosan/agarose at concentrations of 10, 50, 100, and 200 µg/ml.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Quitosana/farmacologia , Sefarose/farmacologia , Apoptose/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia
20.
Heliyon ; 8(12): e12170, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36582717

RESUMO

One of the important challenges of the oil industry is the formation of asphaltene deposits and emulsions, which cause many operational and economic problems. Asphaltenes are heavy and polar fractions of petroleum with a mixture of diverse molecules. Their structural complexity makes the understanding of their properties puzzling. The purpose of this review is to understand the self-association and surface activity properties of asphaltenes. There are some popular models for the mechanism of asphaltene aggregation; each alone is not complete and without defects. Experimental studies and molecular dynamics demonstrate that the mechanism of aggregation is influenced by asphaltene' structure, architecture, and intermolecular forces. Factors such as oil composition, temperature, and pressure affect its intensity. In this article, these issues and their impact on the self-assembly of asphaltenes and ways to prevent it, especially chemical inhibitors, have been discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...