Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(8): 103890, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38870613

RESUMO

Generation of transgenic birds can be achieved by temporal suppression of endogenous spermatogenesis in males prior to primordial germ cell implantation. One of many established methods to induce male sterility is the intraperitoneal injection of busulfan, an alkylating agent. Nevertheless, the use of busulfan injections, which may also affect hematopoietic stem cells, carries the risk of potential lethality in animals. Given their safety and non-toxic nature, it has been demonstrated that intratesticular busulfan injections in mammals are less effective than intraperitoneal injections. This study aimed to compare, for the first time, the sterility and toxicity effects of intraperitoneal vs. intratesticular busulfan injections in quail and chickens. Our experimental design involved a previously established single intraperitoneal busulfan injection of 40 mg/kg of body weight (BW). In quail, busulfan was then administered intratesticularly at 3 different concentrations (6, 12, and 20 mg/kg BW), while in chickens, the working concentration was 20 mg/kg BW. We found that a single intraperitoneal busulfan injection of 40 mg/kg of BW resulted in 100% mortality in the treated roosters. In quails, however, this concentration only caused a temporary suppression of fertility for a 15-d period. Moreover, we found that a higher dose of intratesticular injection of busulfan is required to suppress spermatogenesis in quail (20 mg/kg BW) compared to mammals (4 mg/kg BW). Following these findings, we further confirmed that intratesticular injection of 20 mg/kg BW busulfan into roosters did not affect their overall viability. However, it induced a temporary state of male sterility, consistent with the effects observed with intraperitoneal injections. Hence, our data demonstrate that quail and chicken respond differently to busulfan administration. Furthermore, the present study provides evidence that direct injection into the rooster testes causes less physiological stress than intraperitoneal injection.

2.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37943814

RESUMO

Bird plumage coloration is a complex and multifactorial process that involves both genetic and environmental factors. Diverse pigment groups contribute to plumage variation in different birds. In parrots, the predominant green color results from the combination of 2 different primary colors: yellow and blue. Psittacofulvin, a pigment uniquely found in parrots, is responsible for the yellow coloration, while blue is suggested to be the result of light scattering by feather nanostructures and melanin granules. So far, genetic control of melanin-mediated blue coloration has been elusive. In this study, we demonstrated that feather from the yellow mutant rose-ringed parakeet displays loss of melanosome granules in spongy layer of feather barb. Using whole genome sequencing, we found that mutation in SLC45A2, an important solute carrier protein in melanin synthetic pathway, is responsible for the sex-linked yellow phenotype in rose-ringed parakeet. Intriguingly, one of the mutations, P53L found in yellow Psittacula krameri is already reported as P58A/S in the human albinism database, known to be associated with human OCA4. We further showed that mutations in SLC45A2 gene affect melanin production also in other members of Psittaculidae family such as alexandrine and plum-headed parakeets. Additionally, we demonstrate that the mutations associated with the sex-linked yellow phenotype, localized within the transmembrane domains of the SLC45A2 protein, affect the protein localization pattern. This is the first evidence of plumage color variation involving SLC45A2 in parrots and confirmation of associated mutations in the transmembrane domains of the protein that affects its localization.


Assuntos
Melaninas , Papagaios , Humanos , Animais , Melaninas/genética , Plumas/química , Plumas/metabolismo , Mutação , Papagaios/metabolismo , Fenótipo , Pigmentação/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/genética
3.
Sci Adv ; 9(41): eadi3401, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824622

RESUMO

Foraminifera are unicellular organisms that established the most diverse algal symbioses in the marine realm. Endosymbiosis repeatedly evolved in several lineages, while some engaged in the sequestration of chloroplasts, known as kleptoplasty. So far, kleptoplasty has been documented exclusively in the rotaliid clade. Here, we report the discovery of kleptoplasty in the species Hauerina diversa that belongs to the miliolid clade. The existence of kleptoplasty in the two main clades suggests that it is more widespread than previously documented. We observed chloroplasts in clustered structures within the foraminiferal cytoplasm and confirmed their functionality. Phylogenetic analysis of 18S ribosomal RNA gene sequences showed that H. diversa branches next to symbiont-bearing Alveolinidae. This finding represents evidence of of a relationship between kleptoplastic and symbiotic foraminifera.. Analysis of ribosomal genes and metagenomics revealed that alveolinid symbionts and kleptoplasts belong to the same clade, which suggests a common ancestry.


Assuntos
Foraminíferos , Simbiose , Filogenia , Simbiose/genética , Foraminíferos/genética , Cloroplastos/genética
4.
Clin Genet ; 102(4): 324-332, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35861243

RESUMO

Proteasome 26S, the eukaryotic proteasome, serves as the machinery for cellular protein degradation. It is composed of the 20S core particle and one or two 19S regulatory particles, composed of a base and a lid. To date, several human diseases have been associated with mutations within the 26S proteasome subunits; only one of them affects a base subunit. We now delineate an autosomal recessive syndrome of failure to thrive, severe developmental delay and intellectual disability, spastic tetraplegia with central hypotonia, chorea, hearing loss, micropenis and undescended testes, as well as mild elevation of liver enzymes. None of the affected individuals achieved verbal communication or ambulation. Ventriculomegaly was evident on MRI. Homozygosity mapping combined with exome sequencing revealed a disease-associated p.I328T PSMC1 variant. Protein modeling demonstrated that the PSMC1 variant is located at the highly conserved putative ATP binding and hydrolysis domain, and is suggested to interrupt a hydrophobic core within the protein. Fruit flies in which we silenced the Drosophila ortholog Rpt2 specifically in the eye exhibited an apparent phenotype that was highly rescued by the human wild-type PSMC1, yet only partly by the mutant PSMC1, proving the functional effect of the p.I328T disease-causing variant.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Doenças do Sistema Nervoso , Complexo de Endopeptidases do Proteassoma , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Drosophila , Humanos , Doenças do Sistema Nervoso/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Síndrome
5.
Insect Mol Biol ; 31(2): 216-224, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919304

RESUMO

Insect epithelial cells contain unique cellular extensions such as bristles, hairs, and scales. In contrast to bristle and hair, which are not divergent in their shape, scale morphology shows high diversity. In our attempt to characterize the role of the insect-specific gene, Spindle-F (spn-F), in mosquito development, we revealed a scale-type specific requirement for the mosquito Aedes aegypti spn-F homologue. Using CRISPR-Cas9, we generated Ae-spn-F mutants and found that Ae-spn-F is an essential gene, but we were able to recover a few adult escapers. These escapers could not fly nor move, and died after 3 to 4 days. We found that in Ae-spn-F mutants, only the tip part of the bristle was affected with bulbous with misoriented ribs. We also show that in Ae-spn-F mutants, only in falcate scales, which are curved with a sharp or narrowly rounded apex, and not in other scale types, the tip region is strongly affected. Our analysis also revealed that in contrast to Drosophila spn-F, which show strong defects in both the actin and microtubule (MT) network in the bristle, the Ae-spn-F gene is required only for MT organization in scales and bristles. In summary, our results reveal that Ae-spn-F is required for shaping tapered epithelial cellular extension structures, namely, the bristle and falcate scales by affecting MT organization.


Assuntos
Aedes , Proteínas de Drosophila , Aedes/genética , Animais , Drosophila/genética , Proteínas de Drosophila/química , Genes de Insetos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Mosquitos Vetores
6.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924532

RESUMO

The generation of F-actin bundles is controlled by the action of actin-binding proteins. In Drosophila bristle development, two major actin-bundling proteins-Forked and Fascin-were identified, but still the molecular mechanism by which these actin-bundling proteins and other proteins generate bristle actin bundles is unknown. In this study, we developed a technique that allows recapitulation of bristle actin module organization using the Drosophila ovary by a combination of confocal microscopy, super-resolution structured illumination microscopy, and correlative light and electron microscope analysis. Since Forked generated a distinct ectopic network of actin bundles in the oocyte, the additive effect of two other actin-associated proteins, namely, Fascin and Javelin (Jv), was studied. We found that co-expression of Fascin and Forked demonstrated that the number of actin filaments within the actin bundles dramatically increased, and in their geometric organization, they resembled bristle-like actin bundles. On the other hand, co-expression of Jv with Forked increased the length and density of the actin bundles. When all three proteins co-expressed, the actin bundles were longer and denser, and contained a high number of actin filaments in the bundle. Thus, our results demonstrate that the Drosophila oocyte could serve as a test tube for actin bundle analysis.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Oócitos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Drosophila melanogaster/citologia , Células Germinativas/metabolismo , Oócitos/citologia , Relação Estrutura-Atividade
7.
J Med Genet ; 58(4): 254-263, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32527956

RESUMO

BACKGROUND: Mutation in S-phase cyclin A-associated protein rin the endoplasmic reticulum (SCAPER) have been found across ethnicities and have been shown to cause variable penetrance of an array of pathological traits, including intellectual disability, retinitis pigmentosa and ciliopathies. METHODS: Human clinical phenotyping, surgical testicular sperm extraction and testicular tissue staining. Generation and analysis of short spindle 3 (ssp3) (SCAPER orthologue) Drosophila CAS9-knockout lines. In vitro microtubule (MT) binding assayed by total internal reflection fluorescence microscopy. RESULTS: We show that patients homozygous for a SCAPER mutation lack SCAPER expression in spermatogonia (SPG) and are azoospermic due to early defects in spermatogenesis, leading to the complete absence of meiotic cells. Interestingly, Drosophila null mutants for the ubiquitously expressed ssp3 gene are viable and female fertile but male sterile. We further show that male sterility in ssp3 null mutants is due to failure in both chromosome segregation and cytokinesis. In cells undergoing male meiosis, the MTs emanating from the centrosomes do not appear to interact properly with the chromosomes, which remain dispersed within dividing spermatocytes (SPCs). In addition, mutant SPCs are unable to assemble a normal central spindle and undergo cytokinesis. Consistent with these results, an in vitro assay demonstrated that both SCAPER and Ssp3 directly bind MTs. CONCLUSIONS: Our results show that SCAPER null mutations block the entry into meiosis of SPG, causing azoospermia. Null mutations in ssp3 specifically disrupt MT dynamics during male meiosis, leading to sterility. Moreover, both SCAPER and Ssp3 bind MTs in vitro. These results raise the intriguing possibility of a common feature between human and Drosophila meiosis.


Assuntos
Proteínas de Transporte/genética , Infertilidade Masculina/genética , Microtúbulos/genética , Serina Endopeptidases/genética , Animais , Segregação de Cromossomos/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Predisposição Genética para Doença , Humanos , Infertilidade Masculina/patologia , Masculino , Meiose/genética , Mutação/genética , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/patologia , Fuso Acromático/genética , Fuso Acromático/patologia , Testículo/crescimento & desenvolvimento , Testículo/patologia
8.
Front Cell Dev Biol ; 9: 787976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111755

RESUMO

Diversity in cytoskeleton organization and function may be achieved through alternative tubulin isotypes and by a variety of post-translational modifications. The Drosophila genome contains five different ß-tubulin paralogs, which may play an isotype tissue-specific function in vivo. One of these genes, the ß-tubulin60D gene, which is expressed in a tissue-specific manner, was found to be essential for fly viability and fertility. To further understand the role of the ß-tubulin60D gene, we generated new ß-tubulin60D null alleles (ß-tubulin60D M ) using the CRISPR/Cas9 system and found that the homozygous flies were viable and fertile. Moreover, using a combination of genetic complementation tests, rescue experiments, and cell biology analyses, we identified Pin 1 , an unknown dominant mutant with bristle developmental defects, as a dominant-negative allele of ß-tubulin60D. We also found a missense mutation in the Pin1 mutant that results in an amino acid replacement from the highly conserved glutamate at position 75 to lysine (E75K). Analyzing the ß-tubulin structure suggests that this E75K alteration destabilizes the alpha-helix structure and may also alter the GTP-Mg2+ complex binding capabilities. Our results revisited the credence that ß-tubulin60D is required for fly viability and revealed for the first time in Drosophila, a novel dominant-negative function of missense ß-tubulin60D mutation in bristle morphogenesis.

9.
Sci Rep ; 10(1): 14885, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913276

RESUMO

Insect epithelial cells contain cellular extensions such as bristles, hairs, and scales. These cellular extensions are homologous structures that differ in morphology and function. They contain actin bundles that dictate their cellular morphology. While the organization, function, and identity of the major actin-bundling proteins in bristles and hairs are known, this information on scales is unknown. In this study, we characterized the development of scales and the role of actin bundles in the mosquito, Aedes aegypti. We show that scales undergo drastic morphological changes during development, from a cylindrical to flat shape with longer membrane invagination. Scale actin-bundle distribution changes from the symmetrical organization of actin bundles located throughout the bristle membrane to an asymmetrical organization. By chemically inhibiting actin polymerization and by knocking out the forked gene in the mosquito (Ae-Forked; a known actin-bundling protein) by CRISPR-Cas9 gene editing, we showed that actin bundles are required for shaping bristle, hair, and scale morphology. We demonstrated that actin bundles and Ae-Forked are required for bristle elongation, but not for that of scales. In scales, actin bundles are required for width formation. In summary, our results reveal, for the first time, the developmental process of mosquito scale formation and also the role of actin bundles and actin-bundle proteins in scale morphogenesis. Moreover, our results reveal that although scale and bristle are thought to be homologous structures, actin bundles have a differential requirement in shaping mosquito scales compared to bristles.


Assuntos
Citoesqueleto de Actina/fisiologia , Aedes/anatomia & histologia , Aedes/fisiologia , Embrião não Mamífero/fisiologia , Óvulo/fisiologia , Aedes/embriologia , Animais , Embrião não Mamífero/anatomia & histologia , Feminino , Óvulo/citologia
10.
PLoS One ; 14(10): e0223174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31577833

RESUMO

In the present report, we used highly elongated Drosophila bristle cells to dissect the role of dynein heavy chain (Dhc64C) in Golgi organization. We demonstrated that whereas in the bristle "somal" region Golgi units are composed of cis-, medial, and trans-Golgi compartments ("complete Golgi"), the bristle shaft contains Golgi satellites that lack the trans-Golgi compartment (hereafter referred to as "incomplete Golgi") and which are static and localized at the base area. However, in Dhc64C mutants, the entire bristle shaft was filled with complete Golgi units containing ectopic trans-Golgi components. To further understand Golgi bristle organization, we tested the roles of microtubule (MT) polarity and the Dhc-opposing motor, kinesin heavy chain (Khc). For our surprise, we found that in Khc and Ik2Dominant-negative (DN) flies in which the polarized organization of MTs is affected, the bristle shaft was filled with complete Golgi, similarly to what is seen in Dhc64C flies. Thus, we demonstrated that MTs and the motor proteins Dhc and Khc are required for bristle Golgi organization. However, the fact that both Dhc64C and Khc flies showed similar Golgi defects calls for an additional work to elucidate the molecular mechanism describing why these factors are required for bristle Golgi organization.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Animais , Cinesinas/metabolismo , Mutação/genética
11.
FEBS J ; 286(19): 3811-3830, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31152621

RESUMO

Cell polarity is essential for building cell asymmetry in all eukaryotic cells. Drosophila oocyte and bristle development require the newly characterized Spn-F protein complex, which includes Spn-F, IKKε, and Javelin-like (Jvl), to establish polarity. Jvl is a novel microtubule (MT)-associated protein; however, the mechanism by which it regulates MT organization is still unknown. We found that overexpression of Jvl stabilizes MTs and that jvl is needed for stable MT arrangement at the bristle tip and organization of the dynamic MT throughout the bristle shaft. At low levels of expression in cultured cells, Jvl behaved as a microtubule plus-end tracking protein. We demonstrated that Jvl physically interacts with the highly conserved MT end-binding protein 1 (EB1) using yeast two-hybrid and GST pull-down assays. This interaction is, however, dispensable for Jvl function in oocyte and bristle development. In addition, using a MT-binding assay, we saw that Jvl-C terminus directly binds to MTs. We also revealed that oocyte developmental arrest caused by Jvl overexpression in the germline can be rescued by mutations in its partners, spn-F and ikkε, suggesting that complex formation with Spn-F and IKKε is required for Jvl function in vivo. In summary, our results show that the microtubule plus-end tracking and stabilizing activities of Jvl are central for controlling cell polarity of oocytes and bristles.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Animais , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Infertilidade Feminina/genética , Proteínas dos Microfilamentos/química , Oogênese , Ligação Proteica
12.
Eur J Hum Genet ; 27(6): 928-940, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30723319

RESUMO

Studies of ciliopathies have served in elucidating much of our knowledge of structure and function of primary cilia. We report humans with Bardet-Biedl syndrome who display intellectual disability, retinitis pigmentosa, obesity, short stature and brachydactyly, stemming from a homozyogous truncation mutation in SCAPER, a gene previously associated with mitotic progression. Our findings, based on linkage analysis and exome sequencing studies of two remotely related large consanguineous families, are in line with recent reports of SCAPER variants associated with intellectual disability and retinitis pigmentosa. Using immuno-fluorescence and live cell imaging in NIH/3T3 fibroblasts and SH-SY5Y neuroblastoma cell lines over-expressing SCAPER, we demonstrate that both wild type and mutant SCAPER are expressed in primary cilia and co-localize with tubulin, forming bundles of microtubules. While wild type SCAPER was rarely localized along the ciliary axoneme and basal body, the aberrant protein remained sequestered to the cilia, mostly at the ciliary tip. Notably, longer cilia were demonstrated both in human affected fibroblasts compared to controls, as well as in NIH/3T3 cells transfected with mutant versus wildtype SCAPER. As SCAPER expression is known to peak at late G1 and S phase, overlapping the timing of ciliary resorption, our data suggest a possible role of SCAPER in ciliary dynamics and disassembly, also affecting microtubule-related mitotic progression. Thus, we outline a human ciliopathy syndrome and demonstrate that it is caused by a mutation in SCAPER, affecting primary cilia.


Assuntos
Síndrome de Bardet-Biedl , Proteínas de Transporte , Cílios , Deficiência Intelectual , Mutação , Retinose Pigmentar , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Feminino , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Camundongos , Células NIH 3T3 , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
13.
ACS Appl Mater Interfaces ; 11(6): 6456-6462, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30694641

RESUMO

A microorganism template approach has been explored for the fabrication of various well-defined three-dimensional (3D) structures. However, most of these templates suffer from small size (few µm), difficulty to remove the template, or low surface area, which affect their potential use in different applications or makes industrial scale-up difficult. Conversely, foraminifer's microorganisms are large (up to 200 mm), consist of CaCO3 (easy to dissolve in mild acid), and have a relatively high surface area (≈5 m2 g-1). Herein, we demonstrate the formation of hierarchical structures of inorganic materials using calcareous foraminiferal shells such as Sorites, Globigerinella siphonifera, Lox-ostomina amygdaleformis, Calcarina baculatus or hispida, and Peneroplis planatus. Several techniques, such as thermal decomposition of single-source precursors of metal oxides or sulfides, reduction of metal salts directly on the surfaces, and redox reactions, were used for coating of different shell materials and several hybrid compositions, which possess nanofeatures. Finally, we examined the role of the prepared 3D structures on the reduction of 4-nitrophenol (4-NP), ethanol electrooxidation, and water purification. A remarkable performance was achieved in each application. The hierarchical structure leads to the reduction of 4-NP within several minutes, a 27 mA cm-2 current density peak was obtained for ethanol electrooxidation, and more than 95% of the organic dye contaminants were successfully removed. These results show that using foraminiferal shells offers a new way for designing complex hierarchical structures with unique properties.


Assuntos
Metais/química , Nanoestruturas/química , Corantes/química , Etanol/química , Foraminíferos/química , Foraminíferos/metabolismo , Nitrofenóis/química , Oxirredução , Óxidos/química , Sulfetos/química , Purificação da Água
14.
Biol Open ; 8(1)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30598482

RESUMO

The polarized organization of the Drosophila oocyte can be visualized by examining the asymmetric localization of mRNAs, which is supported by networks of polarized microtubules (MTs). In this study, we used the gene forked, the putative Drosophila homologue of espin, to develop a unique genetic reporter for asymmetric oocyte organization. We generated a null allele of the forked gene using the CRISPR-Cas9 system and found that forked is not required for determining the axes of the Drosophila embryo. However, ectopic expression of a truncated form of GFP-Forked generated a distinct network of asymmetric Forked, which first accumulated at the oocyte posterior and was then restricted to the anterolateral region of the oocyte cortex in mid-oogenesis. This localization pattern resembled that reported for the polarized MTs network. Indeed, pharmacological and genetic manipulation of the polarized organization of the oocyte showed that the filamentous Forked network diffused throughout the entire cortical surface of the oocyte, as would be expected upon perturbation of oocyte polarization. Finally, we demonstrated that Forked associated with Short-stop and Patronin foci, which assemble non-centrosomal MT-organizing centers. Our results thus show that clear visualization of asymmetric GFP-Forked network localization can be used as a novel tool for studying oocyte polarity.

15.
J Med Genet ; 56(3): 139-148, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30464055

RESUMO

BACKGROUND: Consanguineous kindred presented with an autosomal recessive syndrome of intrauterine growth retardation, marked developmental delay, spastic quadriplegia with profound contractures, pseudobulbar palsy with recurrent aspirations, epilepsy, dysmorphism, neurosensory deafness and optic nerve atrophy with no eye fixation. Affected individuals died by the age of 4. Brain MRI demonstrated microcephaly, semilobar holoprosencephaly and agenesis of corpus callosum. We aimed at elucidating the molecular basis of this disease. METHODS: Genome-wide linkage analysis combined with whole exome sequencing were performed to identify disease-causing variants. Functional consequences were investigated in fruit flies null mutant for the Drosophila SEC31A orthologue. SEC31A knockout SH-SY5Y and HEK293T cell-lines were generated using CRISPR/Cas9 and studied through qRT-PCR, immunoblotting and viability assays. RESULTS: Through genetic studies, we identified a disease-associated homozygous nonsense mutation in SEC31A. We demonstrate that SEC31A is ubiquitously expressed, and that the mutation triggers nonsense-mediated decay of its transcript, comprising a practical null mutation. Similar to the human disease phenotype, knockdown SEC31A flies had defective brains and early lethality. Moreover, in line with SEC31A encoding one of the two coating layers comprising the Coat protein complex II (COP-II) complex, trafficking newly synthesised proteins from the endoplasmic reticulum (ER) to the Golgi, CRISPR/Cas9-mediated SEC31A null mutant cells demonstrated reduced viability through upregulation of ER-stress pathways. CONCLUSION: We demonstrate through human and Drosophila genetic and in vitro molecular studies, that a severe neurological syndrome is caused by a null mutation in SEC31A, reducing cell viability through enhanced ER-stress response, in line with SEC31A's role in the COP-II complex.


Assuntos
Retículo Endoplasmático/metabolismo , Homeostase , Mutação , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Consanguinidade , Modelos Animais de Doenças , Drosophila , Eletromiografia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Doenças do Sistema Nervoso/diagnóstico , Condução Nervosa , Linhagem , Fenótipo , Síndrome , Tomografia Computadorizada por Raios X
16.
J Mol Biol ; 431(3): 542-556, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30543824

RESUMO

The fast inactivation and clustering functions of voltage-dependent potassium channels play fundamental roles in electrical signaling. Recent evidence suggests that both these distinct channel functions rely on intrinsically disordered N- and C-terminal cytoplasmic segments that function as entropic clocks to time channel inactivation or scaffold protein-mediated clustering, both relying on what can be described as a "ball and chain" binding mechanism. Although the mechanisms employed in each case are seemingly analogous, both were put forward based on bulky chain deletions and further exhibit differences in reaction order. These considerations raised the question of whether the molecular mechanisms underlying Kv channel fast inactivation and clustering are indeed analogous. By taking a "chain"-level chimeric channel approach involving long and short spliced inactivation or clustering "chain" variants of the Shaker Kv channel, we demonstrate the ability of native inactivation and clustering "chains" to substitute for each other in a length-dependent manner, as predicted by the "ball and chain" mechanism. Our results thus provide direct evidence arguing that the two completely unrelated Shaker Kv channel processes of fast inactivation and clustering indeed occur according to a similar molecular mechanism.


Assuntos
Canais de Potássio/metabolismo , Animais , Análise por Conglomerados , Citoplasma/metabolismo , Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação do Canal Iônico/fisiologia , Proteínas de Membrana/metabolismo , Ligação Proteica
17.
Cell Mol Life Sci ; 75(2): 163-176, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28702760

RESUMO

Mitochondria are cellular organelles of crucial importance, playing roles in cellular life and death. In certain cell types, such as neurons, mitochondria must travel long distances so as to meet metabolic demands of the cell. Mitochondrial movement is essentially microtubule (MT) based and is executed by two main motor proteins, Dynein and Kinesin. The organization of the cellular MT network and the identity of motors dictate mitochondrial transport. Tight coupling between MTs, motors, and the mitochondria is needed for the organelle precise localization. Two adaptor proteins are involved directly in mitochondria-motor coupling, namely Milton known also as TRAK, which is the motor adaptor, and Miro, which is the mitochondrial protein. Here, we discuss the active mitochondria transport process, as well as motor-mitochondria coupling in the context of MT organization in different cell types. We focus on mitochondrial trafficking in different cell types, specifically neurons, migrating cells, and polarized epithelial cells.


Assuntos
Microtúbulos/metabolismo , Microtúbulos/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Transporte Proteico/fisiologia , Animais , Humanos , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia
18.
Development ; 143(22): 4203-4213, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707795

RESUMO

Intrinsic cell microtubule (MT) polarity, together with molecular motors and adaptor proteins, determines mitochondrial polarized targeting and MT-dependent transport. In polarized cells, such as neurons, mitochondrial mobility and transport require the regulation of kinesin and dynein by two adaptor proteins, Milton and Miro. Recently, we found that dynein heavy chain 64C (Dhc64C) is the primary motor protein for both anterograde and retrograde transport of mitochondria in the Drosophila bristle. In this study, we show that a molecular lesion in the Dhc64C allele that reduced bristle mitochondrial velocity generated a variant that acts as a 'slow' dynein in an MT-gliding assay, indicating that dynein directly regulates mitochondrial transport. We also showed that in milton-RNAi flies, mitochondrial flux into the bristle shaft, but not velocity, was significantly reduced. Surprisingly, mitochondria retrograde flux, but not net velocity, was significantly decreased in miro-RNAi flies. We thus reveal a new mode of mitochondrial sorting in polarized cell growth, whereby bi-directional mitochondrial transport undertaken exclusively by dynein is regulated by Milton in the anterograde direction and by a Miro-dependent switch to the retrograde direction.


Assuntos
Transporte Axonal/genética , Polaridade Celular/fisiologia , Proteínas de Drosophila/fisiologia , Dineínas/fisiologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Animais Geneticamente Modificados , Transporte Biológico , Cílios/genética , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Dineínas/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/genética , Transporte Proteico/genética , Pupa , Proteínas rho de Ligação ao GTP/genética
19.
PLoS Genet ; 12(3): e1005919, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27008544

RESUMO

Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Membrana/genética , Microcefalia/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Proteínas Relacionadas à Autofagia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas Desgrenhadas , Drosophila , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microcefalia/patologia , Mutação , Tamanho do Órgão/genética , Via de Sinalização Wnt/genética
20.
Biol Open ; 4(12): 1696-706, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26581590

RESUMO

The microtubule (MT) plus-end motor kinesin heavy chain (Khc) is well known for its role in long distance cargo transport. Recent evidence showed that Khc is also required for the organization of the cellular MT network by mediating MT sliding. We found that mutations in Khc and the gene of its adaptor protein, kinesin light chain (Klc) resulted in identical bristle morphology defects, with the upper part of the bristle being thinner and flatter than normal and failing to taper towards the bristle tip. We demonstrate that bristle mitochondria transport requires Khc but not Klc as a competing force to dynein heavy chain (Dhc). Surprisingly, we demonstrate for the first time that Dhc is the primary motor for both anterograde and retrograde fast mitochondria transport. We found that the upper part of Khc and Klc mutant bristles lacked stable MTs. When following dynamic MT polymerization via the use of GFP-tagged end-binding protein 1 (EB1), it was noted that at Khc and Klc mutant bristle tips, dynamic MTs significantly deviated from the bristle parallel growth axis, relative to wild-type bristles. We also observed that GFP-EB1 failed to concentrate as a focus at the tip of Khc and Klc mutant bristles. We propose that the failure of bristle tapering is due to defects in directing dynamic MTs at the growing tip. Thus, we reveal a new function for Khc and Klc in directing dynamic MTs during polarized cell growth. Moreover, we also demonstrate a novel mode of coordination in mitochondrial transport between Khc and Dhc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA