Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J World Fed Orthod ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209694

RESUMO

BACKGROUND: The mechanism of cortical bone adaptation to static forces is not well understood. This is an important process because static forces are applied to the cortical bone in response to the growth of soft tissues and during Orthodontic and Orthopedic corrections. The aim of this study was to investigate the cortical bone response to expanding forces applied to the maxilla. METHODS: Overall, 375 adult Sprague-Dawley rats were divided into three groups: 1) static force group, 2) static force plus stimulation group, and 3) sham group. In addition to static force across the maxilla, some animals were exposed to anti-inflammatory medication. Samples were collected at different time points and evaluated by micro-computed tomography, fluorescence microscopy, immunohistochemistry, and gene and protein analyses. RESULTS: The application of expansion forces to the maxilla increased inflammation in the periosteum and activated osteoclasts on the surface of the cortical plate. This activation was independent of the magnitude of tooth movement but followed the pattern of skeletal displacement. Bone formation on the surface of the cortical plate occurred at a later stage and resulted in the relocation of the cortical boundary of the maxilla and cortical drifting. CONCLUSIONS: This study demonstrates that cortical bone adaptation to static forces originates from the periosteum, and it is an inflammatory-based phenomenon that can be manipulated by the clinician. Our findings support a new theory for cortical adaptation to static forces and an innovative clinical approach to promote cortical drifting through periosteal stimulation. Being able to control cortical drift can have a significant impact on clinical orthodontic and dentofacial orthopedics by allowing corrections of severe deformities without the need for maxillofacial surgery.

2.
J World Fed Orthod ; 11(5): 146-155, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36153283

RESUMO

BACKGROUND: We and others have reported that low-magnitude high-frequency dynamic loading has an osteogenic effect on alveolar bone. Since chondrocytes and osteoblasts originate from the same progenitor cells, we reasoned that dynamic loading may stimulate a similar response in chondrocytes. A stimulating effect could be beneficial for patients with damaged condylar cartilage or mandibular deficiency. METHODS: Studies were conducted on growing Sprague-Dawley rats divided into three groups: control, static load, and dynamic load. The dynamic load group received a dynamic load on the lower right molars 5 minutes per day with a 0.3 g acceleration and peak strain of 30 µÎµ registered by accelerometer and strain gauge. The static load group received an equivalent magnitude of static force (30 µÎµ). The control group did not receive any treatment. Samples were collected at days 0, 28, and 56 for reverse transcriptase polymerase chain reaction analysis, microcomputed tomography, and histology and fluorescent microscopy analysis. RESULTS: Our experiments showed that dynamic loading had a striking effect on condylar cartilage, increasing the proliferation and differentiation of mesenchymal cells into chondrocytes, and promoting chondrocyte maturation. This effect was accompanied by increased endochondral bone formation resulting in lengthening of the condylar process. CONCLUSIONS: Low-magnitude, high-frequency dynamic loading can have a positive effect on condylar cartilage and endochondral bone formation in vivo. This effect has the potential to be used as a treatment for regenerating condylar cartilage and to enhance the effect of orthopedic appliances on mandibular growth.


Assuntos
Condrócitos , Côndilo Mandibular , Animais , Cartilagem/patologia , Condrócitos/fisiologia , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA