Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-8, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240100

RESUMO

The ribosomal protein S6 kinase beta-1 (RPS6KB1), also known as p70S6 kinase, plays a crucial role in various disease-related conditions such as diabetes, obesity, and cancer. Its activity is regulated by phosphorylation events, including phosphorylation of Threonine 389 in the hydrophobic motif by the mammalian target of rapamycin complex 1 (mTORC1) and phosphorylation of Threonine 229 in the activation loop by PDK1 (phosphoinositide-dependent kinase 1). However, other phenomena connected to RPS6KB1 remain unknown. In this study, we employed virtual screening and molecular docking techniques on the molecules in the ZINC library to identify potential inhibitors. Molecular dynamics (MD) simulations and MMGBSA calculations were carried out on promising compounds to determine their binding affinity and stability. We also evaluated the drug-likeness properties of the selected compounds. A comparative study between the native RPS6KB1 structure, co-crystal ligands, and the shortlisted molecules from the ZINC dataset was carried out. The identified molecules possess significant potential for future in vitro and in vivo studies, paving the way for developing effective cancer treatments.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 42(4): 2034-2042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37286365

RESUMO

The inflicted chaos instigated by the SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) globally continues with the emergence of novel variants. The current global outbreak is aggravated by the manifestation of novel variants, which affect the effectiveness of the vaccine, attachment with hACE2 (human Angiotensin-converting enzyme 2) and immune evasion. Recently, a new variant named University Hospital Institute (IHU) (B.1.640.2) was reported in France in November 2021 and is spreading globally affecting public healthcare. The B.1.640.2 SARS-CoV-2 strain revealed 14 mutations and 9 deletions in spike protein. Thus, it is important to understand how these variations in the spike protein impact the communication with the host. A protein coupling approach along with molecular simulation protocols was used to interpret the variation in the binding of the wild type (WT) and B.1.640.2 variant with hACE2 and Glucose-regulating protein 78 (GRP78) receptors. The initial docking scores revealed a stronger binding of the B.1.640.2-RBD with both the hACE2 and GRP78. To further understand the crucial dynamic changes, we looked at the structural and dynamic characteristics and also explored the variations in the bonding networks between the WT and B.1.640.2-RBD (receptor-binding domain) in association with hACE2 and GRP78, respectively. Our findings revealed that the variant complex demonstrated distinct dynamic properties in contrast to the wild type due to the acquired mutations. Finally, to provide conclusive evidence on the higher binding by the B.1.640.2 variant the TBE was computed for each complex. For the WT with hACE2 the TBE was quantified to be-61.38 ± 0.96 kcal/mol and for B.1.640.2 variant the TBE was estimated to be -70.47 ± 1.00 kcal/mol. For the WT-RBD-GRP78 the TBE -was computed to be 32.32 ± 0.56 kcal/mol and for the B.1.640.2-RBD a TBE of -50.39 ± 0.88 kcal/mol was reported. This show that these mutations are the basis for higher binding and infectivity produced by B.1.640.2 variant and can be targeted for drug designing against it.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Humanos , Chaperona BiP do Retículo Endoplasmático , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...