Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 32(5): 589-603, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25727006

RESUMO

CENP-A is a centromere-specific histone H3 variant that epigenetically determines centromere identity to ensure kinetochore assembly and proper chromosome segregation, but the precise mechanism of its specific localization within centromeric heterochromatin remains obscure. We have discovered that CUL4A-RBX1-COPS8 E3 ligase activity is required for CENP-A ubiquitylation on lysine 124 (K124) and CENP-A centromere localization. A mutation of CENP-A, K124R, reduces interaction with HJURP (a CENP-A-specific histone chaperone) and abrogates localization of CENP-A to the centromere. Addition of monoubiquitin is sufficient to restore CENP-A K124R to centromeres and the interaction with HJURP, indicating that "signaling" ubiquitylation is required for CENP-A loading at centromeres. The CUL4A-RBX1 complex is required for loading newly synthesized CENP-A and maintaining preassembled CENP-A at centromeres. Thus, CENP-A K124R ubiquitylation, mediated by the CUL4A-RBX1-COPS8 complex, is essential for CENP-A deposition at the centromere.


Assuntos
Autoantígenos/metabolismo , Proteínas de Transporte/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Culina/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Autoantígenos/genética , Western Blotting , Complexo do Signalossomo COP9 , Proteínas de Transporte/genética , Células Cultivadas , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Proteínas Culina/genética , Imunofluorescência , Células HeLa , Histonas/metabolismo , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Dados de Sequência Molecular , Nucleossomos/metabolismo , Ligação Proteica , Proteínas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Ubiquitinação
2.
3.
PLoS Genet ; 7(1): e1001282, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21298086

RESUMO

During cell division, the spindle checkpoint ensures accurate chromosome segregation by monitoring the kinetochore-microtubule interaction and delaying the onset of anaphase until each pair of sister chromosomes is properly attached to microtubules. The spindle checkpoint is deactivated as chromosomes start moving toward the spindles in anaphase, but the mechanisms by which this deactivation and adaptation to prolonged mitotic arrest occur remain obscure. Our results strongly suggest that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for the degradation of Bub1 in anaphase, and the phosphorylation is required for adaptation of the spindle checkpoint to prolonged mitotic arrest.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Segregação de Cromossomos , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Fuso Acromático/genética , Anáfase/genética , Anáfase/fisiologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Fase G1 , Genes cdc , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Fase S , Saccharomyces cerevisiae/citologia , Treonina/genética , Treonina/metabolismo
4.
J Biol Chem ; 284(28): 18692-8, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19398558

RESUMO

The kinetochore, which consists of centromere DNA and structural proteins, is essential for proper chromosome segregation in eukaryotes. In budding yeast, Sgt1 and Hsp90 are required for the binding of Skp1 to Ctf13 (a component of the core kinetochore complex CBF3) and therefore for the assembly of CBF3. We have previously shown that Sgt1 dimerization is important for this kinetochore assembly mechanism. In this study, we report that protein kinase CK2 phosphorylates Ser(361) on Sgt1, and this phosphorylation inhibits Sgt1 dimerization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Caseína Quinase II/química , Proteínas de Choque Térmico HSP90/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Proteínas de Choque Térmico HSP90/química , Humanos , Cinetocoros/química , Dados de Sequência Molecular , Proteínas Nucleares/química , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Serina/química , Fatores de Tempo
5.
J Biol Chem ; 284(6): 3586-92, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19073600

RESUMO

The kinetochore, which consists of DNA sequence elements and structural proteins, is essential for high-fidelity chromosome transmission during cell division. In budding yeast, Sgt1 and Hsp90 help assemble the core kinetochore complex CBF3 by activating the CBF3 components Skp1 and Ctf13. In this study, we show that Sgt1 forms homodimers by performing in vitro and in vivo immunoprecipitation and analytical ultracentrifugation analyses. Analyses of the dimerization of Sgt1 deletion proteins showed that the Skp1-binding domain (amino acids 1-211) contains the Sgt1 homodimerization domain. Also, the Sgt1 mutant proteins that were unable to dimerize also did not bind Skp1, suggesting that Sgt1 dimerization is important for Sgt1-Skp1 binding. Restoring dimerization activity of a dimerization-deficient sgt1 mutant (sgt1-L31P) by using the CENP-B (centromere protein-B) dimerization domain suppressed the temperature sensitivity, the benomyl sensitivity, and the chromosome missegregation phenotype of sgt1-L31P. These results strongly suggest that Sgt1 dimerization is required for kinetochore assembly.


Assuntos
Divisão Celular/fisiologia , Cromossomos Fúngicos/metabolismo , Cinetocoros/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Cromossomos Fúngicos/genética , Dimerização , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
6.
PLoS One ; 3(2): e1617, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18286174

RESUMO

The spindle checkpoint ensures the accurate segregation of chromosomes by monitoring the status of kinetochore attachment to microtubules. Simultaneous mutations in one of several kinetochore and cohesion genes and a spindle checkpoint gene cause a synthetic-lethal or synthetic-sick phenotype. A synthetic genetic array (SGA) analysis using a mad2Delta query mutant strain of yeast identified YBP2, a gene whose product shares sequence similarity with the product of YBP1, which is required for H(2)O(2)-induced oxidation of the transcription factor Yap1. ybp2Delta was sensitive to benomyl and accumulated at the mitotic stage of the cell cycle. Ybp2 physically associates with proteins of the COMA complex (Ctf19, Okp1, Mcm21, and Ame1) and 3 components of the Ndc80 complex (Ndc80, Nuf2, and Spc25 but not Spc24) in the central kinetochore and with Cse4 (the centromeric histone and CENP-A homolog). Chromatin-immunoprecipitation analyses revealed that Ybp2 associates specifically with CEN DNA. Furthermore, ybp2Delta showed synthetic-sick interactions with mutants of the genes that encode the COMA complex components. Ybp2 seems to be part of a macromolecular kinetochore complex and appears to contribute to the proper associations among the central kinetochore subcomplexes and the kinetochore-specific nucleosome.


Assuntos
Cinetocoros/metabolismo , Mitose , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Centrômero , DNA/metabolismo , Proteínas de Ligação a DNA , Cinetocoros/química , Microtúbulos , Complexos Multiproteicos , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático
7.
Methods Mol Biol ; 322: 213-22, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16739726

RESUMO

Heat shock proteins (Hsps) are molecular chaperones that aid in the folding and translocation of protein under normal conditions and protect cellular proteins during stressful situations. A family of Hsps, the small Hsps, can maintain denatured target proteins in a folding-competent state such that they can be refolded and regain biological activity in the presence of other molecular chaperones. Previous assays have employed cellular lysates as a source of molecular chaperones involved in folding. In this chapter, we describe the production and purification of a Xenopus laevis recombinant small Hsp, Hsp30C, and an in vivo luciferase (LUC) refolding assay employing microinjected Xenopus oocytes. This assay tests whether LUC can be maintained in a folding-competent state when heat denatured in the presence of a small Hsp or other molecular chaperone. For example, micro-injection of heat-denatured LUC alone into oocytes resulted in minimal reactivation of enzyme activity. However, LUC heat denatured in the presence of Hsp30C resulted in 100% recovery of enzyme activity after microinjection. The in vivo oocyte refolding system is more sensitive and requires less molecular chaperone than in vitro refolding assays. Also, this protocol is not limited to testing Xenopus molecular chaperones because small Hsps from other organisms have been used successfully.


Assuntos
Chaperonas Moleculares/biossíntese , Oócitos/metabolismo , Dobramento de Proteína , Xenopus laevis , Animais , Proteínas de Choque Térmico HSP30/biossíntese , Proteínas de Choque Térmico HSP30/genética , Proteínas de Choque Térmico HSP30/isolamento & purificação , Microinjeções/instrumentação , Microinjeções/métodos , Chaperonas Moleculares/genética , Oócitos/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética , Proteínas de Xenopus/isolamento & purificação
8.
Mol Cell Biol ; 24(18): 8069-79, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15340069

RESUMO

The kinetochore, which consists of DNA sequence elements and structural proteins, is essential for high-fidelity chromosome transmission during cell division. In budding yeast, Sgt1, together with Skp1, is required for assembly of the core kinetochore complex (CBF3) via Ctf13 activation. Formation of the active Ctf13-Skp1 complex also requires Hsp90, a molecular chaperone. We have found that Sgt1 interacts with Hsp90 in yeast. We also have determined that Skp1 and Hsc82 (a yeast Hsp90 protein) bind to the N-terminal region of Sgt1 that contains tetratricopeptide repeat motifs. Results of sequence and phenotypic analyses of sgt1 mutants strongly suggest that the N-terminal region containing the Hsc82-binding and Skp1-binding domains of Sgt1 is important for the kinetochore function of Sgt1. We found that Hsp90's binding to Sgt1 stimulates the binding of Sgt1 to Skp1 and that Sgt1 and Hsp90 stimulate the binding of Skp1 to Ctf13, the F-box core kinetochore protein. Our results strongly suggest that Sgt1 and Hsp90 function in assembling CBF3 by activating Skp1 and Ctf13.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Cinetocoros/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Benzoquinonas , Farmacorresistência Fúngica/genética , Proteínas F-Box/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Técnicas In Vitro , Lactamas Macrocíclicas , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/metabolismo , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Quinonas/farmacologia , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
9.
Mol Cell ; 11(5): 1201-13, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12769845

RESUMO

The spindle checkpoint transiently prevents cell cycle progression of cells that have incurred errors or failed to complete steps during mitosis, including those involving kinetochore function. The molecular nature of the primary signal transmitted from defective kinetochores and how it is detected by the spindle checkpoint are unknown. We report biochemical evidence that Bub1, a component of the spindle checkpoint, associates with centromere (CEN) DNA via Skp1, a core kinetochore component in budding yeast. The Skp1's interaction with Bub1 is required for the mitotic delay induced by kinetochore tension defects, but not for the arrest induced by spindle depolymerization, kinetochore assembly defects, or Mps1 overexpression. We propose that the Skp1-Bub1 interaction is important for transmitting a signal to the spindle checkpoint pathway when insufficient tension is present at kinetochores.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA , Células Eucarióticas/metabolismo , Proteínas F-Box , Genes cdc/fisiologia , Cinetocoros/metabolismo , Mitose/genética , Proteínas Quinases/metabolismo , Proteínas Ligases SKP Culina F-Box , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Animais , Proteínas de Bactérias/genética , Benomilo/farmacologia , Células Cultivadas , Centrômero/genética , Centrômero/metabolismo , DNA/genética , DNA/metabolismo , Mutação/genética , Ligação Proteica/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Fuso Acromático/genética , Estresse Mecânico
11.
Cell Stress Chaperones ; 7(1): 6-16, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11892988

RESUMO

In this study we characterized the chaperone functions of Xenopus recombinant Hsp30C and Hsp30D by using an in vitro rabbit reticulocyte lysate (RRL) refolding assay system as well as a novel in vivo Xenopus oocyte microinjection assay. Whereas heat- or chemically denaturated luciferase (LUC) did not regain significant enzyme activity when added to RRL or microinjected into Xenopus oocytes, compared with native LUC, denaturation of LUC in the presence of Hsp30C resulted in a reactivation of enzyme activity up to 80-100%. Recombinant Hsp30D, which differs from Hsp30C by 19 amino acids, was not as effective as its isoform in preventing LUC aggregation or maintaining it in a folding-competent state. Removal of the first 17 amino acids from the N-terminal region of Hsp30C had little effect on its ability to maintain LUC in a folding-competent state. However, deletion of the last 25 residues from the C-terminal end dramatically reduced Hsp30C chaperone activity. Coimmunoprecipitation and immunoblot analyses revealed that Hsp30C remained associated with heat-denatured LUC during incubation in reticulocyte lysate and that the C-terminal mutant exhibited reduced affinity for unfolded LUC. Finally, we found that Hsc70 present in RRL interacted only with heat-denatured LUC bound to Hsp30C. These findings demonstrate that Xenopus Hsp30 can maintain denatured target protein in a folding-competent state and that the C-terminal end is involved in this function.


Assuntos
Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Luciferases/química , Luciferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Proteínas de Choque Térmico HSP30 , Proteínas de Choque Térmico/química , Temperatura Alta , Proteínas de Membrana/química , Microinjeções , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Oócitos/química , Oócitos/metabolismo , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reticulócitos , Temperatura , Xenopus , Proteínas de Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA