Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(5)2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37239316

RESUMO

Whilst risk prediction for individual prostate cancer (PCa) cases is of a high priority, the current risk stratification indices for PCa management have severe limitations. This study aimed to identify gene copy number alterations (CNAs) with prognostic values and to determine if any combination of gene CNAs could have risk stratification potentials. Clinical and genomic data of 500 PCa cases from the Cancer Genome Atlas stable were retrieved from the Genomic Data Commons and cBioPortal databases. The CNA statuses of a total of 52 genetic markers, including 21 novel markers and 31 previously identified potential prognostic markers, were tested for prognostic significance. The CNA statuses of a total of 51/52 genetic markers were significantly associated with advanced disease at an odds ratio threshold of ≥1.5 or ≤0.667. Moreover, a Kaplan-Meier test identified 27/52 marker CNAs which correlated with disease progression. A Cox Regression analysis showed that the amplification of MIR602 and deletions of MIR602, ZNF267, MROH1, PARP8, and HCN1 correlated with a progression-free survival independent of the disease stage and Gleason prognostic group grade. Furthermore, a binary logistic regression analysis identified twenty-two panels of markers with risk stratification potentials. The best model of 7/52 genetic CNAs, which included the SPOP alteration, SPP1 alteration, CCND1 amplification, PTEN deletion, CDKN1B deletion, PARP8 deletion, and NKX3.1 deletion, stratified the PCa cases into a localised and advanced disease with an accuracy of 70.0%, sensitivity of 85.4%, specificity of 44.9%, positive predictive value of 71.67%, and negative predictive value of 65.35%. This study validated prognostic gene level CNAs identified in previous studies, as well as identified new genetic markers with CNAs that could potentially impact risk stratification in PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Prognóstico , Variações do Número de Cópias de DNA/genética , Marcadores Genéticos , Neoplasias da Próstata/genética , Dosagem de Genes , Proteínas Nucleares/genética , Proteínas Repressoras/genética
2.
Nat Protoc ; 18(3): 929-989, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707722

RESUMO

The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.


Assuntos
Dano ao DNA , Dímeros de Pirimidina , Animais , Humanos , Ensaio Cometa/métodos , Células Eucarióticas , DNA/genética
3.
J Vis Exp ; (183)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35635461

RESUMO

Cells are continually exposed to agents arising from the internal and external environments, which may damage DNA. This damage can cause aberrant cell function, and therefore DNA damage may play a critical role in the development of, conceivably, all major human diseases, e.g., cancer, neurodegenerative and cardiovascular disease, and aging. Single-cell gel electrophoresis (i.e., the comet assay) is one of the most common and sensitive methods to study the formation and repair of a wide range of types of DNA damage (e.g., single- and double-strand breaks, alkali-labile sites, DNA-DNA crosslinks, and, in combination with certain repair enzymes, oxidized purines, and pyrimidines), in both in vitro and in vivo systems. However, the low sample throughput of the conventional assay and laborious sample workup are limiting factors to its widest possible application. With the "scoring" of comets increasingly automated, the limitation is now the ability to process significant numbers of comet slides. Here, a high-throughput (HTP) variant of the comet assay (HTP comet assay) has been developed, which significantly increases the number of samples analyzed, decreases assay run time, the number of individual slide manipulations, reagent requirements, and risk of physical damage to the gels. Furthermore, the footprint of the electrophoresis tank is significantly decreased due to the vertical orientation of the slides and integral cooling. Also reported here is a novel approach to chilling comet assay slides, which conveniently and efficiently facilitates the solidification of the comet gels. Here, the application of these devices to representative comet assay methods has been described. These simple innovations greatly support the use of the comet assay and its application to areas of study such as exposure biology, ecotoxicology, biomonitoring, toxicity screening/testing, together with understanding pathogenesis.


Assuntos
Dano ao DNA , Reparo do DNA , Ensaio Cometa/métodos , DNA/análise , Humanos , Testes de Toxicidade
4.
Int J Mol Sci ; 20(23)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810189

RESUMO

Single cell gel electrophoresis, also known as the comet assay, has become a widespread DNA damage assessment tool due to its sensitivity, adaptability, low cost, ease of use, and reliability. Despite these benefits, this assay has shortcomings, such as long assay running time, the manipulation of multiple slides, individually, through numerous process steps, the challenge of working in a darkened environment, and reportedly considerable inter- and intra-laboratory variation. All researchers typically perform the comet assay based upon a common core approach; however, it appears that some steps in this core have little proven basis, and may exist, partly, out of convenience, or dogma. The aim of this study was to critically re-evaluate key steps in the comet assay, using our laboratory's protocol as a model, firstly to understand the scientific basis for why certain steps in the protocol are performed in a particular manner, and secondly to simplify the assay, and decrease the cost and run time. Here, the shelf life of the lysis and neutralization buffers, the effect of temperature and incubation period during the lysis step, the necessity for drying the slides between the electrophoresis and staining step, and the need to perform the sample workup and electrophoresis steps under subdued light were all evaluated.


Assuntos
Ensaio Cometa/métodos , Monitoramento Ambiental/métodos , Análise de Célula Única/métodos , Dano ao DNA/genética , Humanos , Laboratórios/normas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...