Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Immunol ; : 110769, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38429146

RESUMO

Fortunately, ample efforts are being made to find the best strategy to improve the anti-leukemia capacity of NK cells for treating different types of cancer. Despite the favorable ADCC capacity of functional CD16 + NK cells for immunotherapy, when NK cells face leukemia cells, the CD16 receptor is cleaved during the process mediated by a disintegrin and metalloproteinase-17(ADAM17). Reduced CD16 expression on NK cells weakens their cytotoxicity against leukemia cells. In addition, the expression of the CD47 receptor is high in acute lymphoblastic leukemia (ALL) compared to normal cells and can be correlated with poor prognosis. In the present study, ADAM17 was inhibited in cord blood-derived CD16 + NK cells, and their activity against ALL cell lines was evaluated following blockage with anti-CD47 antibody. As the results showed, the CD16 expression was reduced in the NK cells co-cultured with ALL cell lines. However, the ADAM17 inhibition increased the CD16 expression on the NK cells. This enhanced the cytotoxicity of those cells as well as cytokine production was evaluated by measuring expression of CD107-a expression, and IFN-γ production. Moreover, the presence of the ADAM17 inhibitor increased the apoptosis effect of the generated NK cells in response to ALL cells. Therefore, the inhibition of ADAM17 is useful for the activity of CD16 + NK cells against cancer cells.

2.
Cell J ; 25(10): 674-687, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37865876

RESUMO

OBJECTIVE: Chimeric antigen receptor (CAR) T cell therapy has recently emerged as a promising approach for the treatment of different types of cancer. Improving CAR T cell manufacturing in terms of costs and product quality is an important concern for expanding the accessibility of this therapy. One proposed strategy for improving T cell expansion is to use genetically engineered artificial antigen presenting cells (aAPC) expressing a membrane-bound anti-CD3 for T cell activation. The aim of this study was to characterize CAR T cells generated using this aAPC-mediated approach in terms of expansion efficiency, immunophenotype, and cytotoxicity. MATERIALS AND METHODS: In this experimental study, we generated an aAPC line by engineering K562 cells to express a membrane-bound anti-CD3 (mOKT3). T cell activation was performed by co-culturing PBMCs with either mitomycin C-treated aAPCs or surface-immobilized anti-CD3 and anti-CD28 antibodies. Untransduced and CD19-CARtransduced T cells were characterized in terms of expansion, activation markers, interferon gamma (IFN-γ) secretion, CD4/CD8 ratio, memory phenotype, and exhaustion markers. Cytotoxicity of CD19-CAR T cells generated by aAPCs and antibodies were also investigated using a bioluminescence-based co-culture assay. RESULTS: Our findings showed that the engineered aAPC line has the potential to expand CAR T cells similar to that using the antibody-based method. Although activation with aAPCs leads to a higher ratio of CD8+ and effector memory T cells in the final product, we did not observe a significant difference in IFN-γ secretion, cytotoxic activity or exhaustion between CAR T cells generated with aAPC or antibodies. CONCLUSION: Our results show that despite the differences in the immunophenotypes of aAPC and antibody-based CAR T cells, both methods can be used to manufacture potent CAR T cells. These findings are instrumental for the improvement of the CAR T cell manufacturing process and future applications of aAPC-mediated expansion of CAR T cells.

3.
Int Immunopharmacol ; 125(Pt A): 111093, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897950

RESUMO

Immune cell therapy with chimeric antigen receptor (CAR) T cells, which has shown promising efficacy in patients with some hematologic malignancies, has introduced several successfully approved CAR T cell therapy products. Nevertheless, despite significant advances, treatment with these products has major challenges regarding potential toxicity and sometimes fatal adverse effects for patients. These toxicities can result from cytokine release or on-target off-tumor toxicity that targets healthy host tissue following CAR T cell therapy. The present study focuses on the unexpected side effects of targeting normal host tissues with off-target toxicity. Also, recent safety strategies such as replacing or adding different components to CARs and redesigning CAR structures to eliminate the toxic impact of CAR T cells, including T cell antigen coupler (TAC), switch molecules, suicide genes, and humanized monoclonal antibodies in the design of CARs, are discussed in this review.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
4.
J Biol Eng ; 17(1): 23, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978096

RESUMO

BACKGROUND: Ischemic niche can promote follicular atresia following the transplantation of cryopreserved/thawed ovaries to the heterotopic sites. Thus, the promotion of blood supply is an effective strategy to inhibit/reduce the ischemic damage to ovarian follicles. Here, the angiogenic potential of alginate (Alg) + fibrin (Fib) hydrogel enriched with melatonin (Mel) and CD144+ endothelial cells (ECs) was assessed on encapsulated cryopreserved/thawed ovaries following transplantation to heterotopic sites in rats. METHODS: Alg + Fib hydrogel was fabricated by combining 2% (w/v) sodium Alg, 1% (w/v) Fib, and 5 IU thrombin at a ratio of 4: 2: 1, respectively. The mixture was solidified using 1% CaCl2. Using FTIR, SEM, swelling rate, and biodegradation assay, the physicochemical properties of Alg + Fib hydrogel were evaluated. The EC viability was examined using an MTT assay. Thirty-six adult female rats (aged between 6 and 8 weeks) with a normal estrus cycle were ovariectomized and enrolled in this study. Cryopreserved/thawed ovaries were encapsulated in Alg + Fib hydrogel containing 100 µM Mel + CD144+ ECs (2 × 104 cells/ml) and transplanted into the subcutaneous region. Ovaries were removed after 14 days and the expression of Ang-1, and Ang-2 was monitored using real-time PCR assay. The number of vWF+ and α-SMA+ vessels was assessed using IHC staining. Using Masson's trichrome staining, fibrotic changes were evaluated. RESULTS: FTIR data indicated successful interaction of Alg with Fib in the presence of ionic cross-linker (1% CaCl2). Data confirmed higher biodegradation and swelling rates in Alg + Fib hydrogel compared to the Alg group (p < 0.05). Increased viability was achieved in encapsulated CD144+ ECs compared to the control group (p < 0.05). IF analysis showed the biodistribution of Dil+ ECs within hydrogel two weeks after transplantation. The ratio of Ang-2/Ang-1 was statistically up-regulated in the rats that received Alg + Fib + Mel hydrogel compared to the control-matched groups (p < 0.05). Based on the data, the addition of Mel and CD144+ ECs to Alg + Fib hydrogel reduced fibrotic changes. Along with these changes, the number of vWF+ and α-SMA+ vessels was increased in the presence of Mel and CD144+ ECs. CONCLUSIONS: Co-administration of Alg + Fib with Mel and CD144+ ECs induced angiogenesis toward encapsulated cryopreserved/thawed ovarian transplants, resulting in reduced fibrotic changes.

5.
Reprod Sci ; 30(4): 1082-1093, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35962303

RESUMO

Due to the impact of the modern lifestyle, female infertility has been reduced because of different reasons. For example, in combined chemotherapeutic therapies, a small fraction of cancer survivors has faced different post-complications and side effects such as infertility. Besides, in modern society, delayed age of childbearing has also affected fertility. Nowadays, ovarian tissue cryopreservation and transplantation (OTC/T) is considered one of the appropriate strategies for the restoration of ovarian tissue and bioactivity in patients with the loss of reproductive function. In this regard, several procedures have been considered to improve the efficacy and safety of OTT. Among them, a surgical approach is used to transplant ovaries into the optimal sites, but the existence of ischemic changes and lack of appropriate revascularization can lead to bulk follicular atresia. Besides, the role of OTC/T is limited in women of advanced maternal age undergoing lifesaving chemo-radiation. As a correlate, the development of de novo approaches with efficacious regenerative outcomes is highly welcomed. Tissue engineering shows high therapeutic potentialities to restore fertility in males and females using the combination of biomaterials, cells, and growth factors. Unfortunately, most synthetic and natural materials are at the experimental stage and only the efficacy has been properly evaluated in limited cases. Along with these descriptions, strategies associated with the induction of angiogenesis in transplanted ovaries can diminish the injuries associated with ischemic changes. In this review, the authors tried to summarize recent techniques, especially tissue engineering approaches for improving ovarian function and fertility by focusing on angiogenesis and neovascularization.


Assuntos
Preservação da Fertilidade , Feminino , Humanos , Preservação da Fertilidade/métodos , Ovário/transplante , Engenharia Tecidual , Atresia Folicular , Criopreservação/métodos
6.
Reprod Biol ; 22(4): 100695, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36081236

RESUMO

MicroRNAs (miRNAs) derived from the pre-implantation blastocoel fluid (BF) have attracted interest as accessible biomarkers indicative of embryonic health in ongoing IVF cycles. Therefore, we investigated expression levels of some aneuploidy-associated miRNAs and implantation-related mRNAs as predictive markers for embryo chromosomal normality. In this study, the BF of 25 blastocysts that had been checked for aneuploidy (aneuploid=17 and euploid=8) was aspirated and the expression of 10 miRNAs (miR-20a, miR-30c, miR-661, miR-372, miR-142, miR-191, miR-345, miR-339, miR-141, and miR-27b) and four genes (ERBB4, SELL, ITGB3, ITGAV) were evaluated using real time-PCR. Results showed that the levels of miR-661 and miR-20a were significantly higher in the BF of the aneuploid embryos compared to the euploid group (p = 0.0017 and 0.004, respectively). A comparison of the mRNA levels between the aneuploid and euploid groups also demonstrated a significant difference in ITGAV (p = 0.013) and SELL (p = 0.0317) levels. In the euploid group, a negative correlation was found between ITGB3 and miR-30c (r = -0.71, p = 0.08), and in the aneuploid group, a positive correlation was found between ERBB4 and miR-345 (r = 0.71, p = 0.02). It can be suggested that miR-20a, miR-661, and ITGAV levels of BF could be used as less-invasive biomarkers to evaluate embryonic health. Moreover, aneuploidy-related miRNA levels were associated with levels of genes involved in embryo implantation.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Blastocisto/metabolismo , Implantação do Embrião , Aneuploidia , Biomarcadores/metabolismo , Fertilização in vitro
7.
Front Cell Dev Biol ; 10: 936173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060804

RESUMO

MicroRNAs (miRNAs) play various roles in the implantation and pregnancy process. Abnormal regulation of miRNAs leads to reproductive disorders such as repeated implantation failure (RIF). During the window of implantation, different miRNAs are released from the endometrium, which can potentially reflect the status of the endometrium for in vitro fertilization (IVF). The focus of this review is to determine whether endometrial miRNAs may be utilized as noninvasive biomarkers to predict the ability of endometrium to implant and provide live birth during IVF cycles. The levels of certain miRNAs in the endometrium have been linked to implantation potential and pregnancy outcomes in previous studies. Endometrial miRNAs could be employed as non-invasive biomarkers in the assisted reproductive technology (ART) cycle to determine the optimal time for implantation. Few human studies have evaluated the association between ART outcomes and endometrial miRNAs in RIF patients. This review may pave the way for more miRNA transcriptomic studies on human endometrium and introduce a specific miRNA profile as a multivariable prediction model for choosing the optimal time in the IVF cycle.

8.
Stem Cell Res Ther ; 13(1): 343, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883119

RESUMO

BACKGROUND: Impairment in neurogenesis correlates with memory and  cognitive dysfunction in AD patients. In the recent decade, therapies with stem cell bases are growing and proved to be efficient. This study is a preliminary attempt to explore the impact of NTF-SCs on hippocampal neurogenesis mediated by the Wnt/ß-catenin signaling cascade in AD-like mouse brain parenchyma. METHODS: The BALB/c mice were divided into four groups: Control, AD +Vehicle, AD+ TF-SCs-CM and AD+NTF-SCs (n = 10). For AD induction, 100 µM Aß1-42 was injected into lateral ventricles. The AD-like model was confirmed via passive avoidance test and Thioflavin-S staining 21 days following Aß injection. Next, NTF-SCs were differentiated from ADMSCs, and both NTF-SCs and supernatant (NTF-SCs-CM) were injected into the hippocampus after AD confirmation. Endogenous neural stem cells (NSCs) proliferation capacity was assessed after 50 mg/kbW BrdU injection for 4 days using immunofluorescence (IF) staining. The percent of BrdU/Nestin and BrdU/NeuN positive NSCs were calculated. Real-time RT-PCR was used to detect genes related to the Wnt/ß-catenin signaling cascade. The spatial learning and memory alternation was evaluated using the Morris water maze (MWM). RESULTS: Data showed the reduction in escape latency over 5 days in the AD mice compared to the control group. The administration of NTF-SCs and NTF-SCs-CM increased this value compared to the AD-Vehicle group. Both NTF-SCs and NTF-SCs-CM were the potential to reduce the cumulative distance to the platform in AD mice compared to the AD-Vehicle group. The time spent in target quadrants was ameliorated following NTF-SCs and NTF-SCs-CM transplantation followed by an improved MWM performance. IF imaging revealed the increase in BrdU/Nestin+ and BrdU/NeuN+ in AD mice that received NTF-SCs and NTF-SCs-CM, indicating enhanced neurogenesis. Based on real-time PCR analysis, the expression of PI3K, Akt, MAPK, ERK, Wnt, and ß-catenin was upregulated and coincided with the suppression of GSK-3ß after injection of NTF-SCs-CM and NTF-SCs. In this study, NTF-SCs had superior effects in AD mice that received NTF-SCs compared to NTF-SCs-CM. CONCLUSIONS: The activation of Wnt/ß-catenin pathway via NTF-SCs can be touted as a possible therapeutic approach to restore neurogenesis in AD mice.


Assuntos
Doença de Alzheimer , Via de Sinalização Wnt , Doença de Alzheimer/terapia , Animais , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo , Camundongos , Fatores de Crescimento Neural/metabolismo , Nestina/metabolismo , Neurogênese , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/genética , beta Catenina/metabolismo
9.
Reprod Fertil Dev ; 34(8): 589-597, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35440361

RESUMO

CONTEXT: MicroRNAs (miRNAs) play different roles in oocyte fertilisation, degradation of maternal transcripts, embryo development, and implantation. During in vitro fertilisation (IVF), different miRNAs are released from embryos into the spent culture media (SCM) that can potentially reflect the status of the embryo. AIMS: This study is the assessment of miRNAs, which secreted in SCM during the IVF cycles can be used as noninvasive biomarkers to predict an embryo's ability to form a blastocyst, implant, and give live birth. METHODS: Systematic literature search was conducted to review all recent studies about miRNAs as potential non-invasive biomarkers for selecting the best embryos in the assisted reproductive technology (ART) cycle. KEY RESULTS: Studies have shown that levels of some miRNAs in the SCM have an association with the implantation potential and pregnancy outcome of the embryo. CONCLUSIONS: Embryo-secreted miRNAs can be used as potential non-invasive biomarkers for selecting the best embryos in the ART cycle. Unfortunately, few human studies evaluated the association between ART outcomes and miRNAs in SCM. IMPLICATIONS: This review can pave the way for further miRNAs transcriptomic studies on human embryo culture media and introducing a specific miRNA profile as a multivariable prediction model for embryo selection in IVF cycles.


Assuntos
MicroRNAs , Biomarcadores/metabolismo , Blastocisto/metabolismo , Meios de Cultura/metabolismo , Desenvolvimento Embrionário , Feminino , Fertilização in vitro , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez
10.
JBRA Assist Reprod ; 26(3): 379-386, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34995042

RESUMO

OBJECTIVE: Polycystic ovary syndrome (PCOS) is a common cause of female infertility worldwide. It has been shown that genistein, a natural isoflavone, may influence follicular competence via the production of gonadotropins in women with PCOS. The current study aims to evaluate the effects of genistein on the ovarian tissue of rats with PCOS. METHODS: Thirty female Wistar rats were randomly divided into the following four groups: Control; PCOS (rats received 2 mg/kbW estradiol valerate); Genistein (rats given 1 mg/kg BW of genistein for 14 days); and Genistein + PCOS. All animals were slaughtered under anesthesia and blood samples were collected for biochemical analysis. Follicular morphology was analyzed based on histologic examination. RESULTS: Histologic examination exhibited enhanced follicular atresia at various stages in the rats with PCOS compared to controls (p<0.001). Induction of PCOS caused significant reduction in gonadotropin levels and steroid hormone levels consistent with insulin resistance (p<0.01). Data showed that 14-day administration of genistein might improve follicular morphology in rats with PCOS (p<0.001). Genistein treatment increased the production of gonadotropins and steroid hormones and alleviated insulin resistance in Rats with PCOS (p<0.001). CONCLUSIONS: This study indicated that genistein treatment exerted a beneficial effect on the ovarian tissue of rats with PCOS by improving follicular growth and hormone balance.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Animais , Estradiol , Feminino , Atresia Folicular , Genisteína/farmacologia , Gonadotropinas , Humanos , Ratos , Ratos Wistar
11.
J Gynecol Obstet Hum Reprod ; 51(2): 102290, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34906692

RESUMO

Ovarian failure and ovarian malfunction are among major fertility problems in women of reproductive age (18-35 years). It is known that various diseases, such as ovarian cancer and premature ovarian failure, besides certain treatments, such as radiotherapy and chemotherapy of other organs, can affect the normal process of folliculogenesis and cause infertility. In recent years, various procedures have been proposed for the treatment of infertility. One of the newest methods is the use of cryopreservation ovarian fragments after cancer treatment. According to some studies, this method yields very satisfactory results. Although ovarian tissue cryopreservation (OTC) is an accepted technique of fertility preservation, the relative efficacy of cryopreservation protocols remains controversial. Considering the controversies about these methods and their results, in this study, we aimed to compare different techniques of ovarian cryopreservation and investigate their advantages and disadvantages. Reviewing the published articles may be possible to identify appropriate strategies and improve infertility treatment in these patients.


Assuntos
Criopreservação/métodos , Preservação da Fertilidade/métodos , Feminino , Humanos
12.
Cell Biosci ; 11(1): 181, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641969

RESUMO

During the last decades, numerous basic and clinical studies have been conducted to assess the delivery efficiency of therapeutic agents into the brain and spinal cord parenchyma using several administration routes. Among conventional and in-progress administrative routes, the eligibility of stem cells, viral vectors, and biomaterial systems have been shown in the delivery of NTFs. Despite these manifold advances, the close association between the delivery system and regeneration outcome remains unclear. Herein, we aimed to discuss recent progress in the delivery of these factors and the pros and cons related to each modality.

13.
Int J Toxicol ; 40(3): 218-225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33813947

RESUMO

One of the most important natural extracellular constituents is hyaluronic acid (HA) with the potential to develop a highly organized microenvironment. In the present study, we enriched HA hydrogel with tenascin-C (TN-C) and examined the viability and survival of mouse neural stem cells (NSCs) using different biological assays. Following NSCs isolation and expansion, their phenotype was identified using flow cytometry analysis. Cell survival was measured using MTT assay and DAPI staining after exposure to various concentrations of 50, 100, 200, and 400 nM TN-C. Using acridine orange/ethidium bromide staining, we measured the number of live and necrotic cells after exposure to the combination of HA and TN-C. MTT assay revealed the highest NSCs viability rate in the group exposed to 100 nM TN-C compared to other groups, and a combination of 1% HA + 100 nM TN-C increased the viability of NSCs compared to the HA group after 24 hours. Electron scanning microscopy revealed the higher attachment of these cells to the HA + 100 nM TN-C substrate relative to the HA substrate. Epifluorescence imaging and DAPI staining of loaded cells on HA + 100 nM TN-C substrate significantly increased the number of NSCs per field over 72 hours compared to the HA group (P < 0.05). Live and dead assay revealed that the number of live NSCs significantly increased in the HA + 100 TN-C group compared to HA and control groups. The enrichment of HA substrate with TN-C promoted viability and survival of NSCs and could be applied in neural tissue engineering approaches and regenerative medicine.


Assuntos
Materiais Biocompatíveis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Citotoxinas/toxicidade , Ácido Hialurônico/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Tenascina/toxicidade , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos
14.
Lasers Med Sci ; 36(1): 91-98, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32297252

RESUMO

The integrity of the structural cerebral cortex is disrupted after stroke either at the macroscopic or microscopic levels. Therefore, many attempts have been gathered to circumvent stroke-associated problems in the brain tissue. The current study was aimed to design an animal model of photochemical stroke using rose bengal (RB) plus laser irradiation (L) after 10, 15, and 20 min (´) and evaluate its effect on the cerebral tissue using unbiased stereological quantitative methods and morphometric histological analysis. Photochemical stroke was induced by intraperitoneal injection of RB dye and further activation through the exposure of the right sensorimotor cortex with the green laser radiation (100 mW; 532 nm). Mice were randomly allocated into 4 groups (each in 15) as follows: control (10 µg/gbw RB), RB + 10'L, RB + 15'L, and RB + 20'L. Target irradiation site was adjusted to 2 mm lateral to the bregma. Vernier caliper morphometric evaluation, cresyl violet staining, and unbiased stereological assays including Cavalier's principle and point counting techniques were used to monitor the pathological changes and lesion volume on days 1, 3, and 7 after the ischemia induction. Our data showed that the mean diameter of the lesion site and lesion infarct volume in the group RB + 20'L) was significantly increased relative to the other groups (P < 0.05). Notably, the lesion volume and diameter in the group RB + 15'L was larger compared with the group RB + 10'L and control mice (P < 0.05). Data showed an increased acute inflammatory response such as hyperemia and edema 3 days after ischemic induction while the intensity of acute changes and lesion volume were reduced and replaced with necrotic and chronic pathological changes including astrogliosis on day 7. It is concluded that the laser irradiation of RB-injected mice at a distinct time period could induce the magnificent degenerative effects on the cerebral cortex which is similar to the stroke condition.


Assuntos
Processos Fotoquímicos , Córtex Sensório-Motor/lesões , Córtex Sensório-Motor/efeitos da radiação , Acidente Vascular Cerebral/patologia , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Gliose/complicações , Gliose/patologia , Masculino , Camundongos , Córtex Sensório-Motor/patologia , Acidente Vascular Cerebral/complicações
15.
Cell J ; 22(4): 491-501, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32347043

RESUMO

OBJECTIVE: Many attempts have been made to preserve fertility by improving the cryopreservation of the ovarian tissue. This current studyaimed to improve of direct cover vitrification (DCV) protocol on follicular preservation and angiogenesis in autografted ovarian tissue. MATERIALS AND METHODS: In this experimental study, sixty five female Balb/c mice (5-6 week-old) were anesthetized and their ovaries were dissected. The left ovaries were vitrified by DCV solution, thawed by descending concentrations of sucrose, and then autografted subcutaneously. The right ovaries were autografted with no vitrification procedure prior to transplantation. The animals were sacrificed under anesthesia on the 7th day after transplantation to obtain ovarian tissue. Follicular quality was assessed by histological and ultrastructure observations, and angiogenesis was examined by immunohistochemical staining and real-time polymerase chain reaction (PCR) analysis. RESULTS: The histological and ultrastructure features of the follicles preserved well after vitrification of the ovarian tissue by 10% ethylene glycol (EG) and 10% dimethyl sulfoxide (DMSO). Revascularizationwas manifested prominently in the DCV1-vitrified/grafted ovaries by von Willebrand factor (vWF) and alpha smooth muscle actin (α-SMA) immunostaining. The ovarian tissue vitrified in DCV1 protocol had higher expression levels of angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF) 7 days after autotransplantation (P<0.01). CONCLUSION: These findings suggest that DCV with 10% of both EG and DMSO, is an effective cryopreservation solution for preservation of good quality follicles as well an upregulation of angiogenic factors after ovarian tissue transplantation.

16.
Artif Cells Nanomed Biotechnol ; 48(1): 1089-1104, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32856970

RESUMO

Many traditional procedures, including surgical methods such as microfracture of subchondral bone and soft tissue transplantation, have been widely used to treat damaged cartilage. However, there is still no definitive cure for cartilage defects. In recent decades, tissue engineering has raised hopes for the repair of defective cartilage. Different approaches are used for cartilage engineering, in which cells, scaffolds, and biological signals or growth factors may be used alone or in combination. Additionally, the imitation of the mechanical properties of the natural cartilage tissue by bioreactors is also helpful in this regard. It should be noted that in the transplantation of engineered cartilage tissue, there are challenges such as poor integration, inflammation and phenotypic instability that may lead to failure of neo-cartilage transplantation. Therefore, a comprehensive understanding of the multiple therapeutic approaches, including surgical procedures, cell-based methods and tissue engineering, should be obtained. The present review article provides this information, along with a variety of factors, including cells, materials, and biological/biomechanical factors required for the engineering of cartilage tissue, as well as the challenges ahead and their solutions.


Assuntos
Cartilagem Articular/citologia , Engenharia Tecidual/métodos , Animais , Cartilagem Articular/fisiologia , Humanos , Alicerces Teciduais
17.
J Mol Neurosci ; 70(12): 1967-1976, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32436197

RESUMO

Synapses are touted as the main structural and functional components of neural cells within in the nervous system, providing tissue connectivity and integration via the formation of perineuronal nets. In the present study, we evaluated the synaptogenic activity of electrospun PLGA and PLGA-PEG nanofibers on human SH-SY5Y cells after 14 days in vitro. Electrospun PLGA and PLGA-PEG nanofibers were fabricated and physicochemical properties were examined using the HNMR technique. The cells were classified into three random groups, i.e., control (laminin-coated surface), PLGA, and PLGA-PEG. Scaffolds' features, cell morphology, attachment, and alignment were monitored by SEM imaging. We performed MTT assay to measure cell survival rate. To evaluate neurite formation and axonal outgrowth, cells were stained with an antibody against ß-tubulin III using immunofluorescence imaging. Antibodies against synapsin-1 and synaptophysin were used to explore the impact of PLGA and PLGA-PEG scaffolds on synaptogenesis and functional activity of synapses. According to SEM analysis, the PLGA-PEG scaffold had less thick nanofibers compared with the PLGA scaffold. Cell attachment, expansion, neurite outgrowth, and orientation were promoted in the PLGA-PEG group in comparison with the PLGA substrate (p < 0.05). MTT assay revealed that both scaffolds did not exert any neurotoxic effects on cell viability. Notably, PLGA-PEG surface increased cell viability compared to PLGA by time (p < 0.05). Immunofluorescence staining indicated an increased ß-tubulin III level in the PLGA-PEG group days coincided with axonal outgrowth and immature neuron marker after seven compared with the PLGA and control groups (p < 0.05). Based on our data, both synaptogenesis and functional connectivity were induced in cells plated on the PLGA-PEG surface that coincide with the increase of synapsin-1 and synaptophysin in comparsion with the PLGA and control groups (p < 0.05). Taken together, our results imply that the PLGA-PEG nanofibers could provide the desirable microenvironment to develop perineuronal net formation, contributing to efficient synaptogenesis and neuron-to-neuron crosstalk.


Assuntos
Nanofibras/química , Poliésteres/química , Polietilenoglicóis/química , Sinapses/efeitos dos fármacos , Alicerces Teciduais/química , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Nanofibras/efeitos adversos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Poliésteres/efeitos adversos , Polietilenoglicóis/efeitos adversos , Sinapses/metabolismo , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/efeitos adversos , Tubulina (Proteína)/metabolismo
18.
Curr Mol Med ; 20(9): 675-691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32213158

RESUMO

Stroke is known as one of the very important public health problems that are related to societal burden and tremendous economic losses. It has been shown that there are few therapeutic approaches for the treatment of this disease. In this regard, the present therapeutic platforms aim to obtain neuroprotection, reperfusion, and neuro recovery. Among these therapies, regenerative medicine-based therapies have appeared as new ways of stroke therapy. Hyaluronic acid (HA) is a new candidate, which could be applied as a regenerative medicine-based therapy in the treatment of stroke. HA is a glycosaminoglycan composed of disaccharide repeating elements (N-acetyl-Dglucosamine and D-glucuronic acid). Multiple lines of evidence demonstrated that HA has critical roles in normal tissues. It can be a key player in different physiological and pathophysiological conditions such as water homeostasis, multiple drug resistance, inflammatory processes, tumorigenesis, angiogenesis, and changed viscoelasticity of the extracellular matrix. HA has very important physicochemical properties i.e., availability of reactive functional groups and its solubility, which make it a biocompatible material for application in regenerative medicine. Given that HAbased bioscaffolds and biomaterials do not induce inflammation or allergies and are hydrophilic, they are used as soft tissue fillers and injectable dermal fillers. Several studies indicated that HA could be employed as a new therapeutic candidate in the treatment of stroke. These studies documented that HA and HA-based therapies exert their pharmacological effects via affecting stroke-related processes. Herein, we summarized the role of the extracellular matrix in stroke pathogenesis. Moreover, we highlighted the HA-based therapies for the treatment of stroke.


Assuntos
Proliferação de Células , Ácido Hialurônico/administração & dosagem , Medicina Regenerativa , Acidente Vascular Cerebral/terapia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos
19.
Drug Deliv ; 27(1): 269-282, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32009480

RESUMO

Piroxicam (PX), a main member of non-steroidal anti-inflammatory drugs (NSAIDs), is mainly used orally, which causes side effects of the gastrointestinal tract. It also has systemic effects when administered intramuscularly. Intra-articular (IA) delivery and encapsulation of PX in biodegradable poly-ε-caprolactone (PCL) nanoparticles (NPs) offer potential advantages over conventional oral delivery. The purpose of this study is the development of a new type of anti-inflammatory bio-agents containing collagen and PX-loaded NPs, as an example for an oral formulation replacement, for the prolonged release of PX. In this study, the PX was encapsulated in PCL NPs (size 102.7 ± 19.37 nm, encapsulation efficiency 92.83 ± 0.4410) by oil-in-water (o/w) emulsion solvent evaporation method. Nanoparticles were then characterized for entrapment efficiency, percent yield, particle size analysis, morphological characteristics, and in vitro drug release profiles. Eventually, the NPs synthesized with collagen were conjugated so that the NPs were trapped in the collagen sponges using a cross-linker. Finally, biocompatibility tests showed that the anti-inflammatory agents made in this study had no toxic effect on the cells. Based on the results, it appears that PX-loaded PCL NPs along with collagen (PPCLnp-Coll) can be promising for IA administration based on particulate drug delivery for the treatment of arthritis.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Produtos Biológicos/administração & dosagem , Colágeno/administração & dosagem , Nanopartículas/administração & dosagem , Piroxicam/administração & dosagem , Caproatos/química , Relação Dose-Resposta a Droga , Portadores de Fármacos , Liberação Controlada de Fármacos , Emulsões , Voluntários Saudáveis , Injeções Intra-Articulares , Lactonas/química , Tamanho da Partícula
20.
Life Sci ; 242: 117223, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881222

RESUMO

Acute lymphoblastic leukemia (ALL) is an aggressive cancer in children and adults which possess higher CD47 expression than normal cells. ALL chemotherapy has a lot of side effects and in most cases is ineffective. However arrival of Natural killer (NK) cell immunotherapy raised hopes for successful treatment of cancers, tailoring NK cells to meet clinical requirements is still under investigation. Of note, CD16+ (FCγIIIa) NK cells eliminate tumor cells with antibody dependent cell cytotoxicity (ADCC) mechanism. Therefore, we evaluated ADCC effect of cord blood stem cell derived CD16+ NK cells with using anti CD47 blocking antibody. CD16+ NK cells generated efficiently from CD34 positive cord blood cells in vitro using IL-2, IL-15 and IL-21 cytokines, although it was not dose dependent. CD16+ cells derived from CD34+ cells in day 14 of culture efficiently increased apoptosis in ALL cells, produced INFγ and increased CD107-a expression when used anti CD47 antibody (increased around 30-40%). Interestingly, CD16+ NK cell cytotoxicity slightly increased in combination with macrophages against ALL cells (around 10%). Taken together, our findings induced this hope that cord blood stem cell derived CD16+ NK cells exploit antitumor immune response in cancer therapy with using anti-CD47 antibody.


Assuntos
Anticorpos Anti-Idiotípicos/uso terapêutico , Antígeno CD47/imunologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Células Matadoras Naturais/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Receptores de IgG/imunologia , Anticorpos Anti-Idiotípicos/imunologia , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Imunoterapia/métodos , Microscopia de Fluorescência , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...