Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(28): 19984-19995, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38938525

RESUMO

In this study, a novel environmentally friendly route was explored for the synthesis of a tin-doped titanium dioxide/calcium oxide (Sn-TiO2/CaO) composite using eggshell as a ternary photocatalyst. The composite was prepared via a simple hydrothermal method, resulting in a unique material with potential applications in photocatalysis. The prepared photocatalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis/diffuse reflectance spectroscopy, scanning electron microscopy, X-ray fluorescence, and the Brunauer-Emmett-Teller techniques. At the same time, the Sn-TiO2/CaO composite shows excellent degradation activity for toxic dyes. The degradation efficiencies for alizarin red, bromophenol blue, methylene blue, malachite green, and methyl red are 68.38%, 62.39%, 76.81%, 86.93%, and 17.52%, respectively, under ultraviolet light irradiation for 35 min at pH = 3. In addition, the best photocatalytic degradation efficiency for zero charge (pH 7) and basic pH is for AR 98.21% and 68.38%, MR 33.01% and 17.52%, BPB 73.17% and 17.52%, MB 72.32% and 76.81%, and MG 85.59% and 86.93%, respectively, under UV light irradiation for 35 min. The increase in photocatalytic activity of the ternary photocatalyst is accredited to the enhancement of electron-hole pair separation. Simultaneous photodegradation and photoreduction of organic dyes show that ternary photocatalysts could be used in real wastewater applications.

2.
Anal Chim Acta ; 1303: 342491, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609258

RESUMO

Acinetobacter baumannii (A. baumannii) is a pathogenic bacterium that causes severe infections and its rapid and reliable diagnosis is essential for effective control and treatment. In this study, we present an electrochemical aptasensor based on a signal amplification strategy for the detection of A. baumannii, the high specificity and affinity of the aptamer for the target make it favorable for signal amplification. This allows for a highly sensitive and selective detection of the target. The aptasensor is based on a carbon screen-printed electrode (CSPE) that has been modified with a nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), chitosan (CS), and a synthesized carbon quantum dot (CQD) from CS. Additionally, the self-assembled aptamers were immobilized on hemin-graphite oxide (H-GO) as a signal probe. The composition of the nanocomposite (rGO-MWCNT/CS/CQD) provides high conductivity and stability, facilitating the efficient capture of A. baumannii onto the surface of the aptasensor. Also, aptamer immobilized on Hemin-graphite oxide (H-GO/Aptamer) was utilized as an electrochemical signal reporter probe by H reduction. This approach improved the detection sensitivity and the aptamer surface density for detecting A. baumannii. Furthermore, under optimized experimental conditions, the aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of (10 - 1 × 107 Colony-forming unit (CFU)/mL) and a limit of detection (LOD) of 1 CFU/mL (σ = 3). One of the key features of this aptasensor is its ability to distinguish between live and dead bacteria cells, which is very important and critical for clinical applications. In addition, we have successfully detected A. baumannii bacteria in healthy human serum and skim milk powder samples provided using the prepared electrochemical aptasensor. The functional groups present in the synthetic CQD, rGO-MWCNT, and chitosan facilitate biomolecule immobilization and enhance stability and activity. The fast electron-transfer kinetics and high conductivity of these materials contribute to improved sensitivity and selectivity. Furthermore, The H-GO/Aptamer composite's large surface area increases the number of immobilized secondary aptamers and enables a more stable structure. This large surface area also facilitates more H loading, leading to signal amplification.


Assuntos
Acinetobacter baumannii , Quitosana , Grafite , Nanotubos de Carbono , Pontos Quânticos , Humanos , Hemina , Bactérias , Eletrodos
3.
Anal Biochem ; 679: 115288, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619902

RESUMO

Acinetobacter baumannii (A. baumannii) is responsible for various nosocomial infections, which is known as a clinically crucial opportunistic pathogen. Therefore, rapid detection of this pathogen is critical to prevent the spread of infection and appropriate treatment. Biological detection probes, such as aptamers and synthetic receptors can be used as diagnostic layers to detect bacteria. In this work, an electrochemical aptasensor was developed for the ultrasensitive detection of A. baumannii by electrochemical impedance spectroscopy (EIS). The aptamer was immobilized on the surface of a CSPE modified with the nanocomposite Fe3O4@SiO2@Glyoxal (Gly) for selective and label-free detection of A. baumannii. The charge transfers resistance (Rct) between redox couple [Fe(CN)63-/4-] and the surface of aptasensor in the Nyquist plot of EIS study was used as electroanalytical signal for detection and determination of A. baumannii. The obtained results showed that the constructed aptasensor could specifically detect A. baumannii in the concentration range from 1.0 × 103-1.0 × 108 Colony-forming unit (CFU)/mL and with a detection limit of 150 CFU/mL (S/N = 3). In addition to its sensitivity, the biosensor exhibits high selectivity over some other pathogens. Therefore, a simple, inexpensive, rapid, label-free, selective, and sensitive electrochemical aptasensor was developed to detect A. baumannii.


Assuntos
Acinetobacter baumannii , Dióxido de Silício , Bactérias , Espectroscopia Dielétrica , Glioxal , Oligonucleotídeos
4.
Mikrochim Acta ; 190(8): 308, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466698

RESUMO

An electrochemical aptasensor has been developed to detect Acinetobacter baumannii (A. baumannii). The proposed system was developed by modifying carbon screen-printed electrodes (CSPEs) with a synthesized MWCNT@Fe3O4@SiO2-Cl nanocomposite and then binding A. baumannii-specific aptamer using covalent immobilization on the modified electrode surface and the interaction of methylene blue (MB) with Apt as an electrochemical redox indicator. As a result of the incubation of the A. baumannii bacteria as a target on the proposed aptasensor, a cathodic peak current density (Jpc) of MB decreased due to the formation of the Apt-A. baumannii complex and MB being released from the immobilized Apt on the surface of the modified electrode. In addition to increasing the electron transfer kinetics, the nanocomposite provides a relatively stable matrix to improve the loading Apt sequence. The suggested aptasensor was demonstrated to be capable of detecting A. baumannii with a linear range of 10.0-1.0 × 107 colony-forming unit (CFU) mL-1 and a detection limit of 1 CFU mL-1 (S/N = 3) using differential pulse voltammetry (DPV) studies at a working potential of ~0.29 V and a scan rate of 100 mV s-1. The outcomes revealed that the aptasensor exhibited high A. baumannii detection sensitivity, stability, reproducibility, and specificity.


Assuntos
Acinetobacter baumannii , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Limite de Detecção , Técnicas Eletroquímicas , Azul de Metileno , Reprodutibilidade dos Testes , Dióxido de Silício
5.
Bioelectrochemistry ; 150: 108332, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36493674

RESUMO

An electrochemical aptasensor developed to realize the detection of Pseudomonas aeruginosa (P. aeruginosa) bacteria based on a signal amplification strategy. The carbon screen-printed electrode (CSPE) surface was modified by MIL-101(Cr)/Multi-walled carbon nanotubes (MWCNT), which significantly increased the effective surface area of the electrode, thus resulting in further F23 aptamer immobilization at the surface of the modified electrode. As a result, the P. aeruginosa can be efficiently captured onto the surface of the aptasensor. Moreover, aptamer immobilized on the two-dimensional graphitic carbon nitride complex with silver nanoparticles (AgNPs/c-g-C3N4/Apt) was used as an electrochemical signal label, connected to P. aeruginosa bacteria at the modified electrode. This strategy increased the aptamer surface density and the sensitivity for detecting P. aeruginosa. Also, the resultant material was thoroughly characterized using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis techniques. A highly sensitive voltammetric aptasensor for P. aeruginosa detection was obtained via this strategy at the limit of detection of 1 Colony-forming unit (CFU)/mL (σ = 3). Therefore, this proposed strategy with dual signal amplification can be a promising platform for simple, practical, reliable, and sensitive method for P. aeruginosa.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Pseudomonas aeruginosa , Nanotubos de Carbono/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Prata/química , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...