Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 92: 106272, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566520

RESUMO

We quantitatively study cavitation damage non-invasively, in-place and time-resolved at microsecond resolution. A single, laser-induced bubble is generated in an aqueous NaCl solution close to the surface of an aluminum sample. High-speed chronoamperometry is used to record the corrosion current flowing between the sample and an identical aluminum electrode immersed in the same solution. This configuration makes it possible to measure the cavitation damage in the nanometer thin passive layer of the aluminum surface via the corrosion current from the repassivation. Synchronously with the corrosion current, the bubble dynamics is recorded via high-speed imaging. Correlation between the two measurements allows contributing cavitation damage to the respective stages of the bubble dynamics. The largest cavitation-induced currents were observed for the smallest initial bubble-to-surface stand-off distances. As the bubble re-expands and collapses again in several stages, further current peaks were detected implying a sequence of smaller damage. At intermediate stand-offs the bubble was not damaging and at large stand-off distances, the bubble was only damaging during the second collapse which again occurs at the solid surface.


Assuntos
Alumínio , Corrosão
2.
Ultrason Sonochem ; 58: 104628, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450300

RESUMO

An alloy that is exposed to cavitation may experience mechanical cavitation damages as well as accelerated corrosion. In the present paper, the evolution of corrosion erosion behavior of brass samples (CuZn38Pb3) during continuous exposure to ultrasonic cavitation in a salt solution (NaCl) was investigated. Various samples were sonicated for times between 0 min and 5 h. The average surface roughness and the effective surface area of the samples were measured by confocal microscopy, and the surfaces were inspected by scanning electron microscopy. Different erosion behavior of the phases present on the surface is discussed. Complementary to the surface inspection, the corrosion behavior of the samples before, during and after sonication was investigated through open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The results show that at the initial times of sonication preferably the lead islets were removed from the brass surface, resulting in a change in the open circuit potential. α and ß' phases showed ductile and brittle behavior under sonication, respectively. The corrosion rate of the alloy under cavitation increased as the sonication time increased, mainly related to the increase in effective surface area and the rise of plastic deformation of the surface material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA