Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345012

RESUMO

The tumor-stroma ratio (TSR) has been repeatedly shown to be a prognostic factor for survival prediction of different cancer types. However, an objective and reliable determination of the tumor-stroma ratio remains challenging. We present an easily adaptable deep learning model for accurately segmenting tumor regions in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of colon cancer patients into five distinct classes (tumor, stroma, necrosis, mucus, and background). The tumor-stroma ratio can be determined in the presence of necrotic or mucinous areas. We employ a few-shot model, eventually aiming for the easy adaptability of our approach to related segmentation tasks or other primaries, and compare the results to a well-established state-of-the art approach (U-Net). Both models achieve similar results with an overall accuracy of 86.5% and 86.7%, respectively, indicating that the adaptability does not lead to a significant decrease in accuracy. Moreover, we comprehensively compare with TSR estimates of human observers and examine in detail discrepancies and inter-rater reliability. Adding a second survey for segmentation quality on top of a first survey for TSR estimation, we found that TSR estimations of human observers are not as reliable a ground truth as previously thought.

2.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046600

RESUMO

Neuroblastoma is the most common extracranial, malignant, solid tumor found in children. In more than one-third of cases, the tumor is in an advanced stage, with limited resectability. The treatment options include resection, with or without (neo-/) adjuvant therapy, and conservative therapy, the latter even with curative intent. Contrast-enhanced MRI is used for staging and therapy monitoring. Diffusion-weighted imaging (DWI) is often included. DWI allows for a calculation of the apparent diffusion coefficient (ADC) for quantitative assessment. Histological tumor characteristics can be derived from ADC maps. Monitoring the response to treatment is possible using ADC maps, with an increase in ADC values in cases of a response to therapy. Changes in the ADC value precede volume reduction. The usual criteria for determining the response to therapy can therefore be supplemented by ADC values. While these changes have been observed in neuroblastoma, early changes in the ADC value in response to therapy are less well described. In this study, we evaluated whether there is an early change in the ADC values in neuroblastoma under therapy; if this change depends on the form of therapy; and whether this change may serve as a prognostic marker. We retrospectively evaluated neuroblastoma cases treated in our institution between June 2007 and August 2014. The examinations were grouped as 'prestaging'; 'intermediate staging'; 'final staging'; and 'follow-up'. A classification of "progress", "stable disease", or "regress" was made. For the determination of ADC values, regions of interest were drawn along the borders of all tumor manifestations. To calculate ADC changes (∆ADC), the respective MRI of the prestaging was used as a reference point or, in the case of therapies that took place directly after previous therapies, the associated previous staging. In the follow-up examinations, the previous examination was used as a reference point. The ∆ADC were grouped into ∆ADCregress for regressive disease, ∆ADCstable for stable disease, and ∆ADC for progressive disease. In addition, examinations at 60 to 120 days from the baseline were grouped as er∆ADCregress, er∆ADCstable, and er∆ADCprogress. Any differences were tested for significance using the Mann-Whitney test (level of significance: p < 0.05). In total, 34 patients with 40 evaluable tumor manifestations and 121 diffusion-weighted MRI examinations were finally included. Twenty-seven patients had INSS stage IV neuroblastoma, and seven had INSS stage III neuroblastoma. A positive N-Myc expression was found in 11 tumor diseases, and 17 patients tested negative for N-Myc (with six cases having no information). 26 patients were assigned to the high-risk group according to INRG and eight patients to the intermediate-risk group. There was a significant difference in mean ADC values from the high-risk group compared to those from the intermediate-risk group, according to INRG. The differences between the mean ∆ADC values (absolute and percentage) according to the course of the disease were significant: between ∆ADCregress and ∆ADCstable, between ∆ADCprogress and ∆ADCstable, as well as between ∆ADCregress and ∆ADCprogress. The differences between the mean er∆ADC values (absolute and percentage) according to the course of the disease were significant: between er∆ADCregress and er∆ADCstable, as well as between er∆ADCregress and er∆ADCprogress. Forms of therapy, N-Myc status, and risk groups showed no further significant differences in mean ADC values and ∆ADC/er∆ADC. A clear connection between the ADC changes and the response to therapy could be demonstrated. This held true even within the first 120 days after the start of therapy: an increase in the ADC value corresponds to a probable response to therapy, while a decrease predicts progression. Minimal or no changes were seen in cases of stable disease.

3.
Mod Pathol ; 36(3): 100033, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36931740

RESUMO

Image analysis assistance with artificial intelligence (AI) has become one of the great promises over recent years in pathology, with many scientific studies being published each year. Nonetheless, and perhaps surprisingly, only few image AI systems are already in routine clinical use. A major reason for this is the missing validation of the robustness of many AI systems: beyond a narrow context, the large variability in digital images due to differences in preanalytical laboratory procedures, staining procedures, and scanners can be challenging for the subsequent image analysis. Resulting faulty AI analysis may bias the pathologist and contribute to incorrect diagnoses and, therefore, may lead to inappropriate therapy or prognosis. In this study, a pretrained AI assistance tool for the quantification of Ki-67, estrogen receptor (ER), and progesterone receptor (PR) in breast cancer was evaluated within a realistic study set representative of clinical routine on a total of 204 slides (72 Ki-67, 66 ER, and 66 PR slides). This represents the cohort with the largest image variance for AI tool evaluation to date, including 3 staining systems, 5 whole-slide scanners, and 1 microscope camera. These routine cases were collected without manual preselection and analyzed by 10 participant pathologists from 8 sites. Agreement rates for individual pathologists were found to be 87.6% for Ki-67 and 89.4% for ER/PR, respectively, between scoring with and without the assistance of the AI tool regarding clinical categories. Individual AI analysis results were confirmed by the majority of pathologists in 95.8% of Ki-67 cases and 93.2% of ER/PR cases. The statistical analysis provides evidence for high interobserver variance between pathologists (Krippendorff's α, 0.69) in conventional immunohistochemical quantification. Pathologist agreement increased slightly when using AI support (Krippendorff α, 0.72). Agreement rates of pathologist scores with and without AI assistance provide evidence for the reliability of immunohistochemical scoring with the support of the investigated AI tool under a large number of environmental variables that influence the quality of the diagnosed tissue images.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Antígeno Ki-67/análise , Reprodutibilidade dos Testes , Receptores de Progesterona/análise , Receptores de Estrogênio/análise , Estrogênios
4.
Clin Neuropathol ; 41(4): 174-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575414

RESUMO

Meningiomas are the most common primary intracranial tumors, of which atypical meningiomas account for ~ 20%. A loss of NF2 has been proven to be an initial step for meningioma development; however, the role of non-NF2 alterations is unknown. Here we report a case of an atypical meningioma with a NF2 splice donor mutation and four recurrences. Using a custom NGS panel, further complex heterogenic molecular alterations were discovered. At first, one subclone of the initial tumor showed an additional PIK3CA variant, most likely of no pathogenic relevance. Then, the first and second recurrences no longer harbored the PIK3CA variant and no tumor heterogeneity was found. The tumor-driving NF2 mutation persisted, however. The latest, third recurrence showed a remarkable genetic heterogeneity with multiple, additional non-NF2 variants and a pathogenic PIKC3A mutation. In detail, one subclone showed a SUFU and two SMARCE1 variants. Another, geographically separate tumor subclone, in contrast, showed several different non-NF2 variants in SMO, PIK3CA and SUFU. Most important, one of the newly acquired PIK3CA alterations in the kinase domain (L1006F) is likely to be an additional tumor-driving mutation, which activates the PI3K-AKT-mTOR pathway. The reported genetic heterogeneity in meningiomas has been addressed in only a few studies. Although some of the detected variants in our case are expected to have biochemical consequences, these consequences are usually not likely to promote tumor development, when taking into account the suggested role of the altered proteins in tumorigenic pathways. However, the occurrence of a single oncogenic missense mutation in a subclone of the third recurrence may indicate a clonal change towards enhanced aggressiveness. Taken together, our case supports the need to perform in-depth studies to clarify the role of non-NF2 mutations for meningioma growth and development.


Assuntos
Neoplasias Meníngeas , Meningioma , Proteínas Cromossômicas não Histona/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteínas de Ligação a DNA/genética , Humanos , Neoplasias Meníngeas/patologia , Meningioma/patologia , Mutação , Recidiva Local de Neoplasia/genética , Fosfatidilinositol 3-Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...