Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microlife ; 5: uqae006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659623

RESUMO

The mimivirus 1.2 Mb genome was shown to be organized into a nucleocapsid-like genomic fiber encased in the nucleoid compartment inside the icosahedral capsid. The genomic fiber protein shell is composed of a mixture of two GMC-oxidoreductase paralogs, one of them being the main component of the glycosylated layer of fibrils at the surface of the virion. In this study, we determined the effect of the deletion of each of the corresponding genes on the genomic fiber and the layer of surface fibrils. First, we deleted the GMC-oxidoreductase, the most abundant in the genomic fiber, and determined its structure and composition in the mutant. As expected, it was composed of the second GMC-oxidoreductase and contained 5- and 6-start helices similar to the wild-type fiber. This result led us to propose a model explaining their coexistence. Then we deleted the GMC-oxidoreductase, the most abundant in the layer of fibrils, to analyze its protein composition in the mutant. Second, we showed that the fitness of single mutants and the double mutant were not decreased compared with the wild-type viruses under laboratory conditions. Third, we determined that deleting the GMC-oxidoreductase genes did not impact the glycosylation or the glycan composition of the layer of surface fibrils, despite modifying their protein composition. Because the glycosylation machinery and glycan composition of members of different clades are different, we expanded the analysis of the protein composition of the layer of fibrils to members of the B and C clades and showed that it was different among the three clades and even among isolates within the same clade. Taken together, the results obtained on two distinct central processes (genome packaging and virion coating) illustrate an unexpected functional redundancy in members of the family Mimiviridae, suggesting this may be the major evolutionary force behind their giant genomes.

2.
Nat Protoc ; 19(1): 3-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964008

RESUMO

Giant viruses (GVs) provide an unprecedented source of genetic innovation in the viral world and are thus, besides their importance in basic and environmental virology, in the spotlight for bioengineering advances. Their host, Acanthamoeba castellanii, is an accidental human pathogen that acts as a natural host and environmental reservoir of other human pathogens. Tools for genetic manipulation of viruses and host were lacking. Here, we provide a detailed method for genetic manipulation of A. castellanii and the GVs it plays host to by using CRISPR-Cas9 or homologous recombination. We detail the steps of vector preparation (4 d), transfection of amoeba cells (1 h), infection (1 h), selection (5 d for viruses, 2 weeks for amoebas) and cloning of recombinant viruses (4 d) or amoebas (2 weeks). This procedure takes ~3 weeks or 1 month for the generation of recombinant viruses or amoebas, respectively. This methodology allows the generation of stable gene modifications, which was not possible by using RNA silencing, the only previously available reverse genetic tool. We also include detailed sample-preparation steps for protein localization by immunofluorescence (4 h), western blotting (4 h), quantification of viral particles by optical density (15 min), calculation of viral lethal dose 50 (7 d) and quantification of DNA replication by quantitative PCR (4 h) to allow efficient broad phenotyping of recombinant organisms. This methodology allows the function of thousands of ORFan genes present in GVs, as well as the complex pathogen-host, pathogen-pathogen or pathogen-symbiont interactions in A. castellanii, to be studied in vivo.


Assuntos
Acanthamoeba castellanii , Vírus Gigantes , Vírus , Humanos , Acanthamoeba castellanii/genética
3.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37950899

RESUMO

Pithoviridae are amoeba-infecting giant viruses possessing the largest viral particles known so far. Since the discovery of Pithovirus sibericum, recovered from a 30,000-yr-old permafrost sample, other pithoviruses, and related cedratviruses, were isolated from various terrestrial and aquatic samples. Here, we report the isolation and genome sequencing of 2 Pithoviridae from soil samples, in addition to 3 other recent isolates. Using the 12 available genome sequences, we conducted a thorough comparative genomic study of the Pithoviridae family to decipher the organization and evolution of their genomes. Our study reveals a nonuniform genome organization in 2 main regions: 1 concentrating core genes and another gene duplications. We also found that Pithoviridae genomes are more conservative than other families of giant viruses, with a low and stable proportion (5% to 7%) of genes originating from horizontal transfers. Genome size variation within the family is mainly due to variations in gene duplication rates (from 14% to 28%) and massive invasion by inverted repeats. While these repeated elements are absent from cedratviruses, repeat-rich regions cover as much as a quarter of the pithoviruses genomes. These regions, identified using a dedicated pipeline, are hotspots of mutations, gene capture events, and genomic rearrangements that contribute to their evolution.


Assuntos
Genoma Viral , Vírus Gigantes , Filogenia , Genômica , Vírus Gigantes/genética , Vírion/genética , Evolução Molecular
4.
Viruses ; 15(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851778

RESUMO

One quarter of the Northern hemisphere is underlain by permanently frozen ground, referred to as permafrost. Due to climate warming, irreversibly thawing permafrost is releasing organic matter frozen for up to a million years, most of which decomposes into carbon dioxide and methane, further enhancing the greenhouse effect. Part of this organic matter also consists of revived cellular microbes (prokaryotes, unicellular eukaryotes) as well as viruses that have remained dormant since prehistorical times. While the literature abounds on descriptions of the rich and diverse prokaryotic microbiomes found in permafrost, no additional report about "live" viruses have been published since the two original studies describing pithovirus (in 2014) and mollivirus (in 2015). This wrongly suggests that such occurrences are rare and that "zombie viruses" are not a public health threat. To restore an appreciation closer to reality, we report the preliminary characterizations of 13 new viruses isolated from seven different ancient Siberian permafrost samples, one from the Lena river and one from Kamchatka cryosol. As expected from the host specificity imposed by our protocol, these viruses belong to five different clades infecting Acanthamoeba spp. but not previously revived from permafrost: Pandoravirus, Cedratvirus, Megavirus, and Pacmanvirus, in addition to a new Pithovirus strain.


Assuntos
Acanthamoeba , Pergelissolo , Eucariotos , Células Eucarióticas , Dióxido de Carbono
5.
Nat Commun ; 14(1): 428, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702819

RESUMO

Giant viruses (GVs) are a hotspot of unresolved controversies since their discovery, including the definition of "Virus" and their origin. While increasing knowledge of genome diversity has accumulated, GV functional genomics was largely neglected. Here, we describe an experimental framework to genetically modify nuclear GVs and their host Acanthamoeba castellanii using CRISPR/Cas9, shedding light on the evolution from small icosahedral viruses to amphora-shaped GVs. Ablation of the icosahedral major capsid protein in the phylogenetically-related mollivirus highlights a transition in virion shape and size. We additionally demonstrate the existence of a reduced core essential genome in pandoravirus, reminiscent of their proposed smaller ancestors. This proposed genetic expansion led to increased genome robustness, indicating selective pressures for adaptation to uncertain environments. Overall, we introduce new tools for manipulation of the unexplored genome of nuclear GVs and provide experimental evidence suggesting that viral gigantism has aroused as an emerging trait.


Assuntos
Acanthamoeba castellanii , Vírus Gigantes , Vírus , Vírus de DNA/genética , Sistemas CRISPR-Cas/genética , Acanthamoeba castellanii/genética , Vírus Gigantes/genética , Vírus/genética , Genoma Viral/genética , Filogenia , Evolução Molecular
6.
J Am Chem Soc ; 145(5): 2733-2738, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705935

RESUMO

We have discovered a protein with an amino acid composition exceptionally rich in glycine and cysteine residues in the giant virus mimivirus. This small 6 kDa protein is among the most abundant proteins in the icosahedral 0.75 µm viral particles; it has no predicted function but is probably essential for infection. The aerobically purified red-brownish protein overproduced inEscherichia coli contained both iron and inorganic sulfide. UV/vis, EPR, and Mössbauer studies revealed that the viral protein, coined GciS, accommodated two distinct Fe-S clusters: a diamagnetic S = 0 [2Fe-2S]2+ cluster and a paramagnetic S = 5/2 linear [3Fe-4S]1+ cluster, a geometry rarely stabilized in native proteins. Orthologs of mimivirus GciS were identified within all clades of Megavirinae, a Mimiviridae subfamily infecting Acanthamoeba, including the distantly related tupanviruses, and displayed the same spectroscopic features. Thus, these glycine/cysteine-rich proteins form a new family of viral Fe-S proteins sharing unique Fe-S cluster binding properties.


Assuntos
Vírus Gigantes , Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/química , Vírus Gigantes/metabolismo , Cisteína/química , Glicina , Análise Espectral , Espectroscopia de Ressonância de Spin Eletrônica
7.
Nat Commun ; 13(1): 5853, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207343

RESUMO

Giant viruses are abundant in aquatic environments and ecologically important through the metabolic reprogramming of their hosts. Less is known about giant viruses from soil even though two of them, belonging to two different viral families, were reactivated from 30,000-y-old permafrost samples. This suggests an untapped diversity of Nucleocytoviricota in this environment. Through permafrost metagenomics we reveal a unique diversity pattern and a high heterogeneity in the abundance of giant viruses, representing up to 12% of the sum of sequence coverage in one sample. Pithoviridae and Orpheoviridae-like viruses were the most important contributors. A complete 1.6 Mb Pithoviridae-like circular genome was also assembled from a 42,000-y-old sample. The annotation of the permafrost viral sequences revealed a patchwork of predicted functions amidst a larger reservoir of genes of unknown functions. Finally, the phylogenetic reconstructions not only revealed gene transfers between cells and viruses, but also between viruses from different families.


Assuntos
Vírus Gigantes , Pergelissolo , Vírus , Genoma Viral/genética , Vírus Gigantes/genética , Humanos , Metagenômica , Filogenia , Solo , Vírus/genética
8.
Nat Rev Microbiol ; 20(12): 721-736, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35902763

RESUMO

The discovery of giant viruses, with capsids as large as some bacteria, megabase-range genomes and a variety of traits typically found only in cellular organisms, was one of the most remarkable breakthroughs in biology. Until recently, most of our knowledge of giant viruses came from ~100 species-level isolates for which genome sequences were available. However, these isolates were primarily derived from laboratory-based co-cultivation with few cultured protists and algae and, thus, did not reflect the true diversity of giant viruses. Although virus co-cultures enabled valuable insights into giant virus biology, many questions regarding their origin, evolution and ecological importance remain unanswered. With advances in sequencing technologies and bioinformatics, our understanding of giant viruses has drastically expanded. In this Review, we summarize our understanding of giant virus diversity and biology based on viral isolates as laboratory cultivation has enabled extensive insights into viral morphology and infection strategies. We then explore how cultivation-independent approaches have heightened our understanding of the coding potential and diversity of the Nucleocytoviricota. We discuss how metagenomics has revolutionized our perspective of giant viruses by revealing their distribution across our planet's biomes, where they impact the biology and ecology of a wide range of eukaryotic hosts and ultimately affect global nutrient cycles.


Assuntos
Vírus Gigantes , Vírus , Vírus Gigantes/genética , Genoma Viral , Metagenômica , Eucariotos/genética , Vírus/genética , Filogenia
9.
Elife ; 112022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35900198

RESUMO

Mimivirus is the prototype of the Mimiviridae family of giant dsDNA viruses. Little is known about the organization of the 1.2 Mb genome inside the membrane-limited nucleoid filling the ~0.5 µm icosahedral capsids. Cryo-electron microscopy, cryo-electron tomography, and proteomics revealed that it is encased into a ~30-nm diameter helical protein shell surprisingly composed of two GMC-type oxidoreductases, which also form the glycosylated fibrils decorating the capsid. The genome is arranged in 5- or 6-start left-handed super-helices, with each DNA-strand lining the central channel. This luminal channel of the nucleoprotein fiber is wide enough to accommodate oxidative stress proteins and RNA polymerase subunits identified by proteomics. Such elegant supramolecular organization would represent a remarkable evolutionary strategy for packaging and protecting the genome, in a state ready for immediate transcription upon unwinding in the host cytoplasm. The parsimonious use of the same protein in two unrelated substructures of the virion is unexpected for a giant virus with thousand genes at its disposal.


Assuntos
Vírus Gigantes , Mimiviridae , Capsídeo/metabolismo , Microscopia Crioeletrônica/métodos , Genoma Viral , Vírus Gigantes/genética , Mimiviridae/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Oxirredutases/metabolismo
10.
Chem Rev ; 122(20): 15717-15766, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35820164

RESUMO

Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.


Assuntos
Vírus Gigantes , Vírus , Vírus Gigantes/metabolismo , Polissacarídeos/química , Glicosiltransferases/metabolismo , Glicoproteínas , Glicosídeo Hidrolases/metabolismo , Proteínas Virais , Açúcares
11.
Microlife ; 3: uqac002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37223350

RESUMO

The recent discovery that giant viruses encode proteins related to sugar synthesis and processing paved the way for the study of their glycosylation machinery. We focused on the proposed Megavirinae subfamily, for which glycan-related genes were proposed to code for proteins involved in glycosylation of the layer of fibrils surrounding their icosahedral capsids. We compared sugar compositions and corresponding biosynthetic pathways among clade members using a combination of chemical and bioinformatics approaches. We first demonstrated that Megavirinae glycosylation differs in many aspects from what was previously reported for viruses, as they have complex glycosylation gene clusters made of six and up to 33 genes to synthetize their fibril glycans (biosynthetic pathways for nucleotide-sugars and glycosyltransferases). Second, they synthesize rare amino-sugars, usually restricted to bacteria and absent from their eukaryotic host. Finally, we showed that Megavirinae glycosylation is clade-specific and that Moumouvirus australiensis, a B-clade outsider, shares key features with Cotonvirus japonicus (clade E) and Tupanviruses (clade D). The existence of a glycosylation toolbox in this family could represent an advantageous strategy to survive in an environment where members of the same family are competing for the same amoeba host. This study expands the field of viral glycobiology and raises questions on how Megavirinae evolved such versatile glycosylation machinery.

12.
Microlife ; 3: uqac003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37223356

RESUMO

In the context of global warming, the melting of Arctic permafrost raises the threat of a reemergence of microorganisms some of which were shown to remain viable in ancient frozen soils for up to half a million years. In order to evaluate this risk, it is of interest to acquire a better knowledge of the composition of the microbial communities found in this understudied environment. Here, we present a metagenomic analysis of 12 soil samples from Russian Arctic and subarctic pristine areas: Chukotka, Yakutia and Kamchatka, including nine permafrost samples collected at various depths. These large datasets (9.2 × 1011 total bp) were assembled (525 313 contigs > 5 kb), their encoded protein contents predicted, and then used to perform taxonomical assignments of bacterial, archaeal and eukaryotic organisms, as well as DNA viruses. The various samples exhibited variable DNA contents and highly diverse taxonomic profiles showing no obvious relationship with their locations, depths or deposit ages. Bacteria represented the largely dominant DNA fraction (95%) in all samples, followed by archaea (3.2%), surprisingly little eukaryotes (0.5%), and viruses (0.4%). Although no common taxonomic pattern was identified, the samples shared unexpected high frequencies of ß-lactamase genes, almost 0.9 copy/bacterial genome. In addition to known environmental threats, the particularly intense warming of the Arctic might thus enhance the spread of bacterial antibiotic resistances, today's major challenge in public health. ß-Lactamases were also observed at high frequency in other types of soils, suggesting their general role in the regulation of bacterial populations.

13.
Cell ; 184(16): 4237-4250.e19, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34297924

RESUMO

The organization of genomic DNA into defined nucleosomes has long been viewed as a hallmark of eukaryotes. This paradigm has been challenged by the identification of "minimalist" histones in archaea and more recently by the discovery of genes that encode fused remote homologs of the four eukaryotic histones in Marseilleviridae, a subfamily of giant viruses that infect amoebae. We demonstrate that viral doublet histones are essential for viral infectivity, localize to cytoplasmic viral factories after virus infection, and ultimately are found in the mature virions. Cryogenic electron microscopy (cryo-EM) structures of viral nucleosome-like particles show strong similarities to eukaryotic nucleosomes despite the limited sequence identify. The unique connectors that link the histone chains contribute to the observed instability of viral nucleosomes, and some histone tails assume structural roles. Our results further expand the range of "organisms" that require nucleosomes and suggest a specialized function of histones in the biology of these unusual viruses.


Assuntos
Vírus de DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Amoeba/virologia , Corantes Fluorescentes/metabolismo , Histonas/química , Modelos Moleculares , Proteômica , Vírion/metabolismo
14.
Angew Chem Int Ed Engl ; 60(36): 19897-19904, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34241943

RESUMO

The general perception of viruses is that they are small in terms of size and genome, and that they hijack the host machinery to glycosylate their capsid. Giant viruses subvert all these concepts: their particles are not small, and their genome is more complex than that of some bacteria. Regarding glycosylation, this concept has been already challenged by the finding that Chloroviruses have an autonomous glycosylation machinery that produces oligosaccharides similar in size to those of small viruses (6-12 units), albeit different in structure compared to the viral counterparts. We report herein that Mimivirus possesses a glycocalyx made of two different polysaccharides, now challenging the concept that all viruses coat their capsids with oligosaccharides of discrete size. This discovery contradicts the paradigm that such macromolecules are absent in viruses, blurring the boundaries between giant viruses and the cellular world and opening new avenues in the field of viral glycobiology.


Assuntos
Mimiviridae/metabolismo , Polissacarídeos/biossíntese , Glicosilação , Mimiviridae/química , Polissacarídeos/química
15.
Curr Biol ; 30(19): R1108-R1110, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33022247

RESUMO

Chantal Abergel and Jean-Michel Claverie introduce giant viruses.


Assuntos
Evolução Biológica , Ecossistema , Genoma Viral , Vírus Gigantes/classificação , Vírus Gigantes/fisiologia , Interações Hospedeiro-Patógeno , Humanos
16.
Nat Commun ; 11(1): 2657, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461636

RESUMO

DNA methylation is an important epigenetic mark that contributes to various regulations in all domains of life. Giant viruses are widespread dsDNA viruses with gene contents overlapping the cellular world that also encode DNA methyltransferases. Yet, virtually nothing is known about the methylation of their DNA. Here, we use single-molecule real-time sequencing to study the complete methylome of a large spectrum of giant viruses. We show that DNA methylation is widespread, affecting 2/3 of the tested families, although unevenly distributed. We also identify the corresponding viral methyltransferases and show that they are subject to intricate gene transfers between bacteria, viruses and their eukaryotic host. Most methyltransferases are conserved, functional and under purifying selection, suggesting that they increase the viruses' fitness. Some virally encoded methyltransferases are also paired with restriction endonucleases forming Restriction-Modification systems. Our data suggest that giant viruses' methyltransferases are involved in diverse forms of virus-pathogens interactions during coinfections.


Assuntos
Metilação de DNA/genética , Epigenoma/genética , Vírus Gigantes/genética , Evolução Biológica , Enzimas de Restrição do DNA/genética , Enzimas de Restrição-Modificação do DNA/genética , Genes Virais , Genoma Viral , Interações Hospedeiro-Parasita/genética , Metiltransferases/genética , Filogenia
17.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996429

RESUMO

Microbes trapped in permanently frozen paleosoils (permafrost) are the focus of increasing research in the context of global warming. Our previous investigations led to the discovery and reactivation of two Acanthamoeba-infecting giant viruses, Mollivirus sibericum and Pithovirus sibericum, from a 30,000-year old permafrost layer. While several modern pithovirus strains have since been isolated, no contemporary mollivirus relative was found. We now describe Mollivirus kamchatka, a close relative to M. sibericum, isolated from surface soil sampled on the bank of the Kronotsky River in Kamchatka, Russian Federation. This discovery confirms that molliviruses have not gone extinct and are at least present in a distant subarctic continental location. This modern isolate exhibits a nucleocytoplasmic replication cycle identical to that of M. sibericum Its spherical particle (0.6 µm in diameter) encloses a 648-kb GC-rich double-stranded DNA genome coding for 480 proteins, of which 61% are unique to these two molliviruses. The 461 homologous proteins are highly conserved (92% identical residues, on average), despite the presumed stasis of M. sibericum for the last 30,000 years. Selection pressure analyses show that most of these proteins contribute to virus fitness. The comparison of these first two molliviruses clarify their evolutionary relationship with the pandoraviruses, supporting their provisional classification in a distinct family, the Molliviridae, pending the eventual discovery of intermediary missing links better demonstrating their common ancestry.IMPORTANCE Virology has long been viewed through the prism of human, cattle, or plant diseases, leading to a largely incomplete picture of the viral world. The serendipitous discovery of the first giant virus visible under a light microscope (i.e., >0.3 µm in diameter), mimivirus, opened a new era of environmental virology, now incorporating protozoan-infecting viruses. Planet-wide isolation studies and metagenome analyses have shown the presence of giant viruses in most terrestrial and aquatic environments, including upper Pleistocene frozen soils. Those systematic surveys have led authors to propose several new distinct families, including the Mimiviridae, Marseilleviridae, Faustoviridae, Pandoraviridae, and Pithoviridae We now propose to introduce one additional family, the Molliviridae, following the description of M. kamchatka, the first modern relative of M. sibericum, previously isolated from 30,000-year-old arctic permafrost.


Assuntos
Vírus Gigantes/classificação , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação , Filogenia , Acanthamoeba/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Genoma Viral , Genômica , Vírus Gigantes/ultraestrutura , Mimiviridae/classificação , Mimiviridae/genética , Federação Russa , Microbiologia do Solo , Vírion/genética , Vírion/ultraestrutura , Vírus não Classificados/classificação , Vírus não Classificados/genética , Vírus não Classificados/isolamento & purificação
18.
ISME J ; 14(3): 727-739, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31822788

RESUMO

Acanthamoeba-infecting Mimiviridae are giant viruses with dsDNA genome up to 1.5 Mb. They build viral factories in the host cytoplasm in which the nuclear-like virus-encoded functions take place. They are themselves the target of infections by 20-kb-dsDNA virophages, replicating in the giant virus factories and can also be found associated with 7-kb-DNA episomes, dubbed transpovirons. Here we isolated a virophage (Zamilon vitis) and two transpovirons respectively associated to B- and C-clade mimiviruses. We found that the virophage could transfer each transpoviron provided the host viruses were devoid of a resident transpoviron (permissive effect). If not, only the resident transpoviron originally isolated from the corresponding virus was replicated and propagated within the virophage progeny (dominance effect). Although B- and C-clade viruses devoid of transpoviron could replicate each transpoviron, they did it with a lower efficiency across clades, suggesting an ongoing process of adaptive co-evolution. We analysed the proteomes of host viruses and virophage particles in search of proteins involved in this adaptation process. This study also highlights a unique example of intricate commensalism in the viral world, where the transpoviron uses the virophage to propagate and where the Zamilon virophage and the transpoviron depend on the giant virus to replicate, without affecting its infectious cycle.


Assuntos
Acanthamoeba/virologia , Mimiviridae/fisiologia , Vírus Gigantes/genética , Vírus Gigantes/fisiologia , Mimiviridae/genética , Mimiviridae/crescimento & desenvolvimento , Mimiviridae/isolamento & purificação , Simbiose , Virófagos/genética , Virófagos/fisiologia
19.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534042

RESUMO

Pandoraviridae is a rapidly growing family of giant viruses, all of which have been isolated using laboratory strains of Acanthamoeba The genomes of 10 distinct strains have been fully characterized, reaching up to 2.5 Mb in size. These double-stranded DNA genomes encode the largest of all known viral proteomes and are propagated in oblate virions that are among the largest ever described (1.2 µm long and 0.5 µm wide). The evolutionary origin of these atypical viruses is the object of numerous speculations. Applying the chaos game representation to the pandoravirus genome sequences, we discovered that the tetranucleotide (4-mer) "AGCT" is totally absent from the genomes of 2 strains (Pandoravirus dulcis and Pandoravirus quercus) and strongly underrepresented in others. Given the amazingly low probability of such an observation in the corresponding randomized sequences, we investigated its biological significance through a comprehensive study of the 4-mer compositions of all viral genomes. Our results indicate that AGCT was specifically eliminated during the evolution of the Pandoraviridae and that none of the previously proposed host-virus antagonistic relationships could explain this phenomenon. Unlike the three other families of giant viruses (Mimiviridae, Pithoviridae, and Molliviridae) infecting the same Acanthamoeba host, the pandoraviruses exhibit a puzzling genomic anomaly suggesting a highly specific DNA editing in response to a new kind of strong evolutionary pressure.IMPORTANCE Recent years have seen the discovery of several families of giant DNA viruses infecting the ubiquitous amoebozoa of the genus Acanthamoeba With double-stranded DNA (dsDNA) genomes reaching 2.5 Mb in length packaged in oblate particles the size of a bacterium, the pandoraviruses are currently the most complex and largest viruses known. In addition to their spectacular dimensions, the pandoraviruses encode the largest proportion of proteins without homologs in other organisms, which is thought to result from a de novo gene creation process. While using comparative genomics to investigate the evolutionary forces responsible for the emergence of such an unusual giant virus family, we discovered a unique bias in the tetranucleotide composition of the pandoravirus genomes that can result only from an undescribed evolutionary process not encountered in any other microorganism.


Assuntos
Acanthamoeba/virologia , Vírus Gigantes/classificação , Vírus Gigantes/genética , Vírus Gigantes/fisiologia , Sequência de Bases , Vírus de DNA/genética , Evolução Molecular , Edição de Genes , Genoma Viral , Interações Hospedeiro-Patógeno/fisiologia , Mimiviridae/genética , Vírion/genética
20.
Front Microbiol ; 10: 430, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906288

RESUMO

With genomes of up to 2.7 Mb propagated in µm-long oblong particles and initially predicted to encode more than 2000 proteins, members of the Pandoraviridae family display the most extreme features of the known viral world. The mere existence of such giant viruses raises fundamental questions about their origin and the processes governing their evolution. A previous analysis of six newly available isolates, independently confirmed by a study including three others, established that the Pandoraviridae pan-genome is open, meaning that each new strain exhibits protein-coding genes not previously identified in other family members. With an average increment of about 60 proteins, the gene repertoire shows no sign of reaching a limit and remains largely coding for proteins without recognizable homologs in other viruses or cells (ORFans). To explain these results, we proposed that most new protein-coding genes were created de novo, from pre-existing non-coding regions of the G+C rich pandoravirus genomes. The comparison of the gene content of a new isolate, pandoravirus celtis, closely related (96% identical genome) to the previously described p. quercus is now used to test this hypothesis by studying genomic changes in a microevolution range. Our results confirm that the differences between these two similar gene contents mostly consist of protein-coding genes without known homologs, with statistical signatures close to that of intergenic regions. These newborn proteins are under slight negative selection, perhaps to maintain stable folds and prevent protein aggregation pending the eventual emergence of fitness-increasing functions. Our study also unraveled several insertion events mediated by a transposase of the hAT family, 3 copies of which are found in p. celtis and are presumably active. Members of the Pandoraviridae are presently the first viruses known to encode this type of transposase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA