Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1592, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383472

RESUMO

Magnetic kagome metals are a promising platform to develop unique quantum transport and optical phenomena caused by the interplay between topological electronic bands, strong correlations, and magnetic order. This interplay may result in exotic quasiparticles that describe the coupled electronic and spin excitations on the frustrated kagome lattice. Here, we observe novel elementary magnetic excitations within the ferromagnetic Mn kagome layers in TbMn6Sn6 using inelastic neutron scattering. We observe sharp, collective acoustic magnons and identify flat-band magnons that are localized to a hexagonal plaquette due to the special geometry of the kagome layer. Surprisingly, we observe another type of elementary magnetic excitation; a chiral magnetic quasiparticle that is also localized on a hexagonal plaquette. The short lifetime of localized flat-band and chiral quasiparticles suggest that they are hybrid excitations that decay into electronic states.

2.
Nat Commun ; 14(1): 2658, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160929

RESUMO

Ferromagnetic (FM) order in a two-dimensional kagome layer is predicted to generate a topological Chern insulator without an applied magnetic field. The Chern gap is largest when spin moments point perpendicular to the kagome layer, enabling the capability to switch topological transport properties, such as the quantum anomalous Hall effect, by controlling the spin orientation. In TbMn6Sn6, the uniaxial magnetic anisotropy of the Tb3+ ion is effective at generating the Chern state within the FM Mn kagome layers while a spin-reorientation (SR) transition to easy-plane order above TSR = 310 K provides a mechanism for switching. Here, we use inelastic neutron scattering to provide key insights into the fundamental nature of the SR transition. The observation of two Tb excitations, which are split by the magnetic anisotropy energy, indicates an effective two-state orbital character for the Tb ion, with a uniaxial ground state and an isotropic excited state. The simultaneous observation of both modes below TSR confirms that orbital fluctuations are slow on magnetic and electronic time scales < ps and act as a spatially-random orbital alloy. A thermally-driven critical concentration of isotropic Tb ions triggers the SR transition.

3.
Phys Rev Lett ; 129(25): 255901, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608232

RESUMO

Fast-propagating waves in the phase of incommensurate structures, called phasons, have long been argued to enhance thermal transport. Although supersonic phason velocities have been observed, the lifetimes, from which mean free paths can be determined, have not been resolved. Using inelastic neutron scattering and thermal conductivity measurements, we establish that phasons in piezoelectric fresnoite make a major contribution to thermal conductivity by propagating with higher group velocities and longer mean free paths than phonons. The phason contribution to thermal conductivity is maximum near room temperature, where it is the single largest contributing degree of freedom.

4.
Nat Mater ; 20(7): 977-983, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33723420

RESUMO

Lead halide perovskites exhibit structural instabilities and large atomic fluctuations thought to impact their optical and thermal properties, yet detailed structural and temporal correlations of their atomic motions remain poorly understood. Here, these correlations are resolved in CsPbBr3 crystals using momentum-resolved neutron and X-ray scattering measurements as a function of temperature, complemented with first-principles simulations. We uncover a striking network of diffuse scattering rods, arising from the liquid-like damping of low-energy Br-dominated phonons, reproduced in our simulations of the anharmonic phonon self-energy. These overdamped modes cover a continuum of wave vectors along the edges of the cubic Brillouin zone, corresponding to two-dimensional sheets of correlated rotations in real space, and could represent precursors to proposed two-dimensional polarons. Further, these motions directly impact the electronic gap edge states, linking soft anharmonic lattice dynamics and optoelectronic properties. These results provide insights into the highly unusual atomic dynamics of halide perovskites, relevant to further optimization of their optical and thermal properties.

5.
Phys Rev Lett ; 125(8): 085504, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909782

RESUMO

All phonons in a single crystal of NaBr are measured by inelastic neutron scattering at temperatures of 10, 300, and 700 K. Even at 300 K, the phonons, especially the longitudinal-optical phonons, show large shifts in frequencies and show large broadenings in energy owing to anharmonicity. Ab initio computations are first performed with the quasiharmonic approximation (QHA) in which the phonon frequencies depend only on V and on T only insofar as it alters V by thermal expansion. This QHA is an unqualified failure for predicting the temperature dependence of phonon frequencies, even 300 K, and the thermal expansion is in error by a factor of 4. Ab initio computations that include both anharmonicity and quasiharmonicity successfully predict both the temperature dependence of phonons and the large thermal expansion of NaBr. The frequencies of longitudinal-optical phonon modes decrease significantly with temperature owing to the real part of the phonon self-energy from explicit anharmonicity originating from the cubic anharmonicity of nearest-neighbor NaBr bonds. Anharmonicity is not a correction to the QHA predictions of thermal expansion and thermal phonon shifts but dominates the behavior.

6.
Phys Rev Lett ; 124(22): 225902, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567931

RESUMO

Using inelastic neutron scattering and molecular dynamics simulations on a model Zr-Cu-Al metallic glass, we show that transverse phonons persist well into the high-frequency regime, and can be detected at large momentum transfer. Furthermore, the apparent peak width of the transverse phonons was found to follow the static structure factor. The one-to-one correspondence, which was demonstrated for both Zr-Cu-Al metallic glass and a three-dimensional Lennard-Jones model glass, suggests a universal correlation between the phonon dynamics and the underlying disordered structure. This remarkable correlation, not found for longitudinal phonons, underscores the key role that transverse phonons hold for understanding the structure-dynamics relationship in disordered materials.

7.
J Chem Phys ; 152(7): 074506, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087649

RESUMO

Even though the viscosity is one of the most fundamental properties of liquids, the connection with the atomic structure of the liquid has proven elusive. By combining inelastic neutron scattering with the electrostatic levitation technique, the time-dependent pair-distribution function (i.e., the Van Hove function) has been determined for liquid Zr80Pt20. We show that the decay time of the first peak of the Van Hove function is directly related to the Maxwell relaxation time of the liquid, which is proportional to the shear viscosity. This result demonstrates that the local dynamics for increasing or decreasing the coordination number of local clusters by one determines the viscosity at high temperature, supporting earlier predictions from molecular dynamics simulations.

8.
Phys Rev B ; 1022020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38450057

RESUMO

We use neutron scattering to investigate spin excitations in Sr(Co1-xNix)2As2, which has a c-axis incommensurate helical structure of the two-dimensional (2D) in-plane ferromagnetic (FM) ordered layers for 0.013⩽x⩽0.25. By comparing the wave vector and energy dependent spin excitations in helical ordered Sr(Co0.9Ni0.1)2As2 and paramagnetic SrCO2As2, we find that Ni doping, while increasing lattice disorder in Sr(Co1-xNix)2As2, enhances quasi-2D FM spin fluctuations. However, our band structure calculations within the combined density functional theory and dynamic mean field theory (DFT+DMFT) failed to generate a correct incommensurate wave vector for the observed helical order from nested Fermi surfaces. Since transport measurements reveal increased in-plane and c-axis electrical resistivity with increasing Ni doping and associated lattice disorder, we conclude that the helical magnetic order in Sr(Co1-xNix)2As2 may arise from a quantum order-by-disorder mechanism through the itinerant electron mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions.

9.
Phys Rev Lett ; 122(11): 117204, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951336

RESUMO

We use inelastic neutron scattering to study energy and wave vector dependence of spin fluctuations in SrCo_{2}As_{2}, derived from SrFe_{2-x}Co_{x}As_{2} iron pnictide superconductors. Our data reveal the coexistence of antiferromagnetic (AF) and ferromagnetic (FM) spin fluctuations at wave vectors Q_{AF}=(1,0) and Q_{FM}=(0,0)/(2,0), respectively. By comparing neutron scattering results with those of dynamic mean field theory calculation and angle-resolved photoemission spectroscopy experiments, we conclude that both AF and FM spin fluctuations in SrCo_{2}As_{2} are closely associated with a flatband of the e_{g} orbitals near the Fermi level, different from the t_{2g} orbitals in superconducting SrFe_{2-x}Co_{x}As_{2}. Therefore, Co substitution in SrFe_{2-x}Co_{x}As_{2} induces a t_{2g} to e_{g} orbital switching, and is responsible for FM spin fluctuations detrimental to the singlet pairing superconductivity.

10.
Sci Adv ; 5(3): eaaw4367, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30915399

RESUMO

Gehring et al. argue that a splitting observed by us in the transverse acoustic (TA) phonon in the relaxor ferroelectric Pb[(Mg1/3Nb2/3)1-x Ti x ]O3 with x = 0.30 (PMN-30PT) is caused by a combination of inelastic-elastic multiple scattering processes called ghostons. Their argument is motivated by differences observed between their measurements made on a triple-axis spectrometer and our measurements on a time-of-flight spectrometer. We show that the differences can be explained by differences in the instrument resolution functions. We demonstrate that the multiple scattering conditions proposed by Gehring et al. do not work for our scattering geometry. We also show that, when a ghoston is present, it is too weak to detect and therefore cannot explain the splitting. Last, this phonon splitting is just one part of the argument, and the overall conclusion of the original paper is supported by other results.

11.
Phys Rev B ; 100(13)2019.
Artigo em Inglês | MEDLINE | ID: mdl-33644522

RESUMO

An inelastic neutron scattering study has been performed in an S = 3/2 bilayer honeycomb lattice compound Bi3Mn4O12(NO3) at ambient and high magnetic fields. Relatively broad and monotonically dispersive magnetic excitations were observed at ambient field, where no long-range magnetic order exists. In the magnetic-field-induced long-range ordered state at 10 T, the magnetic dispersions become slightly more intense, albeit still broad as in the disordered state, and two excitation gaps, probably originating from an easy-plane magnetic anisotropy and intrabilayer interactions, develop. Analyzing the magnetic dispersions using the linear spin-wave theory, we estimated the intraplane and intrabilayer magnetic interactions, which are almost consistent with those determined by ab initio density functional theory calculations [M. Alaei et al., Phys. Rev. B 96, 140404(R) (2017)], except the third and fourth neighbor intrabilayer interactions. Most importantly, as predicted by the theory, there is no significant frustration in the honeycomb plane but frustrating intrabilayer interactions probably give rise to the disordered ground state.

12.
Nat Commun ; 9(1): 2591, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968725

RESUMO

Topological magnons are emergent quantum spin excitations featured by magnon bands crossing linearly at the points dubbed nodes, analogous to fermions in topological electronic systems. Experimental realisation of topological magnons in three dimensions has not been reported so far. Here, by measuring spin excitations (magnons) of a three-dimensional antiferromagnet Cu3TeO6 with inelastic neutron scattering, we provide direct spectroscopic evidence for the coexistence of symmetry-protected Dirac and triply degenerate nodes, the latter involving three-component magnons beyond the Dirac-Weyl framework. Our theoretical calculations show that the observed topological magnon band structure can be well described by the linear-spin-wave theory based on a Hamiltonian dominated by the nearest-neighbour exchange interaction J1. As such, we showcase Cu3TeO6 as an example system where Dirac and triply degenerate magnonic nodal excitations coexist, demonstrate an exotic topological state of matter, and provide a fresh ground to explore the topological properties in quantum materials.

13.
Phys Rev Lett ; 120(24): 245701, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956961

RESUMO

Shape memory strain glasses are frustrated ferroelastic materials with glasslike slow relaxation and nanodomains. It is possible to change a NiCoMnIn Heusler alloy from a martensitically transforming alloy to a nontransforming strain glass by annealing, but minimal differences are evident in the short- or long-range order above the transition temperature-although there is a structural relaxation and a 0.18% lattice expansion in the annealed sample. Using neutron scattering we find glasslike phonon damping in the strain glass but not the transforming alloy at temperatures well above the transition. Damping occurs in the mode with displacements matching the martensitic transformation. With support from first-principles calculations, we argue that the strain glass originates not with transformation strain pinning but with a disruption of the underlying electronic instability when disorder resonance states cross the Fermi level.

14.
Phys Rev Lett ; 120(20): 207603, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864364

RESUMO

The formation of polar nanoregions through solid-solution additions is known to enhance significantly the functional properties of ferroelectric materials. Despite considerable progress in characterizing the microscopic behavior of polar nanoregions (PNR), understanding their real-space atomic structure and dynamics of their formation remains a considerable challenge. Here, using the method of dynamic pair distribution function, we provide direct insights into the role of solid-solution additions towards the stabilization of polar nanoregions in the Pb-free ferroelectric of Ba(Zr,Ti)O_{3}. It is shown that for an optimum level of substitution of Ti by larger Zr ions, the dynamics of atomic displacements for ferroelectric polarization are slowed sufficiently below THz frequencies, which leads to increased local correlation among dipoles within PNRs. The dynamic pair distribution function technique demonstrates a unique capability to obtain insights into locally correlated atomic dynamics in disordered materials, including new Pb-free ferroelectrics, which is necessary to understand and control their functional properties.

15.
Nat Commun ; 9(1): 1823, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739934

RESUMO

Controlling the thermal energy of lattice vibrations separately from electrons is vital to many applications including electronic devices and thermoelectric energy conversion. To remove heat without shorting electrical connections, heat must be carried in the lattice of electrical insulators. Phonons are limited to the speed of sound, which, compared to the speed of electronic processes, puts a fundamental constraint on thermal management. Here we report a supersonic channel for the propagation of lattice energy in the technologically promising piezoelectric mineral fresnoite (Ba2TiSi2O8) using neutron scattering. Lattice energy propagates 2.8-4.3 times the speed of sound in the form of phasons, which are caused by an incommensurate modulation in the flexible framework structure of fresnoite. The phasons enhance the thermal conductivity by 20% at room temperature and carry lattice-energy signals at speeds beyond the limits of phonons.

16.
Proc Natl Acad Sci U S A ; 115(9): 1992-1997, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440490

RESUMO

Despite the widespread use of silicon in modern technology, its peculiar thermal expansion is not well understood. Adapting harmonic phonons to the specific volume at temperature, the quasiharmonic approximation, has become accepted for simulating the thermal expansion, but has given ambiguous interpretations for microscopic mechanisms. To test atomistic mechanisms, we performed inelastic neutron scattering experiments from 100 K to 1,500 K on a single crystal of silicon to measure the changes in phonon frequencies. Our state-of-the-art ab initio calculations, which fully account for phonon anharmonicity and nuclear quantum effects, reproduced the measured shifts of individual phonons with temperature, whereas quasiharmonic shifts were mostly of the wrong sign. Surprisingly, the accepted quasiharmonic model was found to predict the thermal expansion owing to a large cancellation of contributions from individual phonons.

17.
Rev Sci Instrum ; 88(10): 105116, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29092522

RESUMO

We present the design and operating characteristics of a vacuum furnace used for inelastic neutron scattering experiments on a time-of-flight chopper spectrometer. The device is an actively water cooled radiant heating furnace capable of performing experiments up to 1873 K. Inelastic neutron scattering studies performed with this furnace include studies of phonon dynamics and metallic liquids. We describe the design, control, characterization, and limitations of the equipment. Further, we provide comparisons of the neutron performance of our device with commercially available options. Finally we consider upgrade paths to improve performance and reliability.

18.
Phys Rev Lett ; 119(14): 147201, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053286

RESUMO

Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo_{2-y}As_{2} at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J_{1}-J_{2} Heisenberg model on a square lattice with ferromagnetic J_{1} and hence indicate that the extensive previous experimental and theoretical study of the J_{1}-J_{2} Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

19.
Rev Sci Instrum ; 88(12): 123102, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289163

RESUMO

Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

20.
Phys Rev Lett ; 117(7): 076402, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563978

RESUMO

Ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M_{5}^{-} phonon mode in B2-ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. The thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M_{5}^{-} phonon mode and an adiabatic electron-phonon interaction with an unusual temperature dependence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...