Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630327

RESUMO

A green, fast and selective approach for the synthesis of mono-substituted closo-decaborate derivatives [2-B10H9COR]2- has been established via a nucleophilic addition reaction between the carbonyl derivative of closo-decaborate [2-B10H9CO]- and the corresponding Grignard reagent RMgX, where R is the ethyl, iso-propyl, pentyl, allyl, vinyl and propynyl groups. This approach is accomplished under mild conditions with 70-80% yields. The significance of these derivative is their ability to constitute building blocks for polymeric integration via the allyl, vinyl and propynyl substituents. All products were characterized by 11B, 1H and 13C NMR, elemental analysis and mass spectrometry.

5.
Dalton Trans ; 43(34): 13087-95, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25042868

RESUMO

Novel silylated hydroborate clusters comprising the closo-decaborate cage were prepared and characterized by (1)H, (13)C, (11)B, (29)Si NMR and mass spectroscopy ESI. The synthesis of such silylated clusters was achieved using reactive derivatives of [B10H10](2-), [1-B10H9N2](-) and [2-B10H9CO](-). These silylated decaborate clusters constitute a new class of precursors that can be covalently anchored onto various silica supports without any prior surface modification. As a proof of concept, the synthesized precursors were successfully anchored on mesoporous silica, SBA-15 type, in different percentages, where the mesoporous material retained its structure. All materials modified with closo-decaborate were characterized by (11)B and (29)Si solid state NMR, XRD, TEM and nitrogen sorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...