Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(4): 2004-2013, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36369961

RESUMO

BACKGROUND: During red winemaking, diffusion of phenolic compounds from the grape berry cells into the liquid phase occurs simultaneously with the adsorption of the same compounds onto the pulp. In previous studies, we quantified the proportions of polyphenols diffusing from the skins and then assessed the amounts that can be fixed by the pulp. In this work, we added the impact of seeds, also present during vinification, by carrying out macerations in a model medium with the following berry compartments: skins, seeds, skins + seeds, skins + seeds + pulp. RESULTS: Interestingly, the seeds alone released a rather high amount of polyphenols. As soon as they were in the presence of cell walls of skin/flesh, and/or anthocyanins, the concentration of seed tannins in the solution dropped dramatically, due to a combined effect of adsorption and/or precipitation and/or chemical reactions. The pulp certainly adsorbed tannins, but they also tended to shift the extraction equilibria, and it seems that more tannins could be extracted from skins and seeds when pulp was present. Polyphenol amounts extracted in model systems with skins + seeds + pulp were close to what was extracted in microvinification. CONCLUSION: These model experiments reflect relatively well extraction during microvinification experiments and highlight the respective impact of the grape berry's different compartments in the wine's final phenolic composition as well as some of the mechanisms involved. © 2022 Society of Chemical Industry.


Assuntos
Vitis , Vinho , Antocianinas/análise , Vinho/análise , Fenóis/química , Polifenóis/química , Vitis/química , Taninos/análise , Sementes/química , Frutas/química
2.
Food Chem ; 406: 135023, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36470080

RESUMO

Concentrations of anthocyanins and tannins after extraction from berries in wines and from skin macerations in model solutions have been studied for two grape varieties, two maturation levels and two vintages berries. Characterization of the cell wall polysaccharides has also been performed, the classical method based on the analysis of the neutral sugars after depolymerization being completed by a comprehensive microarray polymer profiling (CoMPP). Extraction was lower in model solutions than in wines, with the same ranking: non acylated anthocyanins> tannins > p-coumaroylated anthocyanins. The polysaccharidic composition suggested a role of homogalacturonans, rhamnogalacturonans and extensins in the extraction process. A global explanation of the interactions between anthocyanins, tannins and polysaccharides is proposed.


Assuntos
Vitis , Vinho , Taninos/análise , Antocianinas/análise , Frutas/química , Vinho/análise , Polissacarídeos/análise , Parede Celular/química
3.
J Sci Food Agric ; 102(8): 3379-3392, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34820844

RESUMO

BACKGROUND: During winemaking, after extraction from the skins, anthocyanins and tannins adsorb onto the pulp flesh cell walls. The present study aimed to quantify the amounts adsorbed and their impact on wine composition, the impact of variety and ethanol on adsorption, and whether the presence of anthocyanins plays a role and impacts tannin adsorption. RESULTS: Anthocyanin and tannin fractions obtained by mimicking winemaking conditions were mixed with fresh flesh cell walls of two varieties: Carignan and Grenache. Adsorption isotherms were measured. Adsorption of tannins was higher with Carignan than with Grenache and decreased when the ethanol content increased. In comparison, anthocyanins were adsorbed in small amounts, and their mixing with tannins had no impact on their adsorption. The differences were related to differences in pulp cell wall composition, particularly in terms of extensins and arabinans. CONCLUSION: Adsorption of tannins, which can reach 50% of the initial amount, depends on the pulp cell wall composition. This needs to be investigated further. © 2021 Society of Chemical Industry.


Assuntos
Vitis , Vinho , Adsorção , Antocianinas/análise , Parede Celular/química , Etanol/análise , Frutas/química , Taninos/análise , Vitis/química , Vinho/análise
4.
J Sci Food Agric ; 101(8): 3257-3269, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33222281

RESUMO

BACKGROUND: Skin cell walls modulate anthocyanin and tannin extraction from grape skins. However, relationships between the composition of alcohol-insoluble cell wall solids (AIS) and extraction are still unclear. Our objectives were to characterize the impact of variety, berry size and ripeness on skin AIS composition (polysaccharides, proteins) and polyphenol extraction during maceration. RESULTS: Grape skin composition and its impact on polyphenol extraction was compared for two varieties - Carignan and Grenache - with skins of berries sorted according to their size and density. Extractions were performed under model wine-like maceration conditions. Fresh skins had similar content of polymeric tannins, but strongly differed in their anthocyanin content (higher in Carignan and in the ripest berries) and composition (higher proportions in coumaroylated anthocyanins in Carignan). Anthocyanin extraction was proportionally much higher in Grenache, which was not just related to the Carignan's higher levels in coumaroylated anthocyanins. Chemical reactions decreased anthocyanin concentrations in solution for both varieties. Tannin extraction for Grenache was slightly higher and faster than for Carignan. Skin AISs differed slightly between the two varieties in their carbohydrate composition and protein content, but not between modalities. Polyphenol analyses in the precipitates evidenced at the end of the maceration and in residual skins highlighted differences between the two varieties and between berries with different ripeness. CONCLUSION: Structural information on the cell wall network and on its changes during maceration, along with a better understanding of the chemical reactions of anthocyanins and tannins, is needed to better relate grape and wine polyphenol composition. © 2020 Society of Chemical Industry.


Assuntos
Frutas/crescimento & desenvolvimento , Extratos Vegetais/análise , Polifenóis/análise , Vitis/química , Vinho/análise , Antocianinas/análise , Antocianinas/isolamento & purificação , Parede Celular/química , Frutas/química , Frutas/classificação , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Taninos/análise , Vitis/classificação , Vitis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...