Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Front Physiol ; 14: 1271149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916217

RESUMO

Lipoprotein lipase (LPL) is responsible for the intravascular catabolism of triglyceride-rich lipoproteins and plays a central role in whole-body energy balance and lipid homeostasis. As such, LPL is subject to tissue-specific regulation in different physiological conditions, but the mechanisms of this regulation remain incompletely characterized. Previous work revealed that LPL comprises a set of proteoforms with different isoelectric points, but their regulation and functional significance have not been studied thus far. Here we studied the distribution of LPL proteoforms in different rat tissues and their regulation under physiological conditions. First, analysis by two-dimensional electrophoresis and Western blot showed different patterns of LPL proteoforms (i.e., different pI or relative abundance of LPL proteoforms) in different rat tissues under basal conditions, which could be related to the tissue-specific regulation of the enzyme. Next, the comparison of LPL proteoforms from heart and brown adipose tissue between adults and 15-day-old rat pups, two conditions with minimal regulation of LPL in these tissues, yielded virtually the same tissue-specific patterns of LPL proteoforms. In contrast, the pronounced downregulation of LPL activity observed in white adipose tissue during fasting is accompanied by a prominent reconfiguration of the LPL proteoform pattern. Furthermore, refeeding reverts this downregulation of LPL activity and restores the pattern of LPL proteoforms in this tissue. Importantly, this reversible proteoform-specific regulation during fasting and refeeding indicates that LPL proteoforms are functionally diverse. Further investigation of potential differences in the functional properties of LPL proteoforms showed that all proteoforms exhibit lipolytic activity and have similar heparin-binding affinity, although other functional aspects remain to be investigated. Overall, this study demonstrates the ubiquity, differential distribution and specific regulation of LPL proteoforms in rat tissues and underscores the need to consider the existence of LPL proteoforms for a complete understanding of LPL regulation under physiological conditions.

2.
MethodsX ; 11: 102403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37854711

RESUMO

Classically, the characterization of wastewater components has been restricted to the measurement of indirect parameters (chemical and biological oxygen demand, total nitrogen) and small molecules of interest in epidemiology or for environmental control. Despite the fact that metaproteomics has provided important knowledge about the microbial communities in these waters, practically nothing is known about other non-microbial proteins transported in the wastewater. The method described here has allowed us to perform a large-scale characterization of the wastewater proteome. Wastewater protein profiles have shown to be very different in different collection sites probably reflecting their human population and industrial activities. We believe that wastewater proteomics is opening the doors to the discovery of new environmental and health biomarkers and the development of new, more effective monitoring devices for issues like monitorization of population health, pest control, or control of industry discharges. The method developed is relatively simple and combines procedures for the separation of the soluble and particulate fractions of wastewater and their concentration, and conventional shotgun proteomics using high-resolution mass spectrometry for protein identification. •Unprecedented method for wastewater proteome characterization.•Proteins as new potential biomarkers for sewage chemical-information mining, wastewater epidemiology and environmental monitoring.•Wastewater protein profiles reflect human and industrial activities.

3.
Environ Sci Technol ; 57(30): 10929-10939, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463250

RESUMO

Wastewater-based epidemiology has been revealed as a powerful approach for surveying the health and lifestyle of a population. In this context, proteins have been proposed as potential biomarkers that complement the information provided by currently available methods. However, little is known about the range of molecular species and dynamics of proteins in wastewater and the information hidden in these protein profiles is still to be uncovered. In this study, we investigated the protein composition of wastewater from 10 municipalities in Catalonia with diverse populations and industrial activities at three different times of the year. The soluble fraction of this material was analyzed using liquid chromatography high-resolution tandem mass spectrometry using a shotgun proteomics approach. The complete proteomic profile, distribution among different organisms, and semiquantitative analysis of the main constituents are described. Excreta (urine and feces) from humans, and blood and other residues from livestock were identified as the two main protein sources. Our findings provide new insights into the characterization of wastewater proteomics that allow for the proposal of specific bioindicators for wastewater-based environmental monitoring. This includes human and animal population monitoring, most notably for rodent pest control (immunoglobulins (Igs) and amylases) and livestock processing industry monitoring (albumins).


Assuntos
Esgotos , Águas Residuárias , Animais , Humanos , Esgotos/química , Proteômica , Cromatografia Líquida/métodos , Biomarcadores
4.
Int J Pharm ; 636: 122808, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889415

RESUMO

Two of the most promising techniques in terms of ex vivo skin imaging and quantifying are confocal Raman microscopy and MALDI-TOF mass spectrometry imaging (MALDI-TOF MSI). Both techniques were set up, and the semiquantitative skin biodistribution of previously developed dexamethasone (DEX) loaded lipomers was compared using Benzalkonium chloride (BAK) as a tracer of the nanoparticles. In MALDI-TOF MSI, DEX was derivatised with GirT (DEX-GirT) and the semiquantitative biodistribution of both DEX-GirT and BAK was successfully obtained. The amount of DEX measured by confocal Raman microscopy was higher than that measured by MALDI-TOF MSI, but MALDI-TOF MSI proved to be a more suitable technique for tracing BAK. An absorption-promoting tendency of DEX loaded in lipomers versus a free-DEX solution was observed in confocal Raman microscopy. The higher spatial resolution of confocal Raman microscopy (350 nm) with respect to MALDI-TOF MSI (50 µm) allowed to observe specific skin structures like hair follicles. Nevertheless, the faster sampling rate of MALDI-TOF-MSI, permitted the analysis of larger tissue regions. In conclusion, both techniques allowed to simultaneously analyze semiquantitative data together with qualitative images of biodistribution, which is a very helpful tool when designing nanoparticles that accumulate in specific anatomical regions.


Assuntos
Microscopia , Pele , Distribuição Tecidual , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Dexametasona
5.
Front Immunol ; 13: 946358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131943

RESUMO

Communication through cell-cell contacts and extracellular vesicles (EVs) enables immune cells to coordinate their responses against diverse types of pathogens. The function exerted by EVs in this context depends on the proteins and nucleic acids loaded into EVs, which elicit specific responses involved in the resolution of infection. Several mechanisms control protein and nucleic acid loading into EVs; in this regard, acetylation has been described as a mechanism of cellular retention during protein sorting to exosomes. HDAC6 is a deacetylase involved in the control of cytoskeleton trafficking, organelle polarity and cell migration, defense against Listeria monocytogenes (Lm) infection and other immune related functions. Here, we show that the protein content of dendritic cells (DCs) and their secreted EVs (DEVs) vary during Lm infection, is enriched in proteins related to antiviral functions compared to non-infected cells and depends on HDAC6 expression. Analyses of the post-translational modifications revealed an alteration of the acetylation and ubiquitination profiles upon Lm infection both in DC lysates and DEVs. Functionally, EVs derived from infected DCs upregulate anti-pathogenic genes (e.g. inflammatory cytokines) in recipient immature DCs, which translated into protection from subsequent infection with vaccinia virus. Interestingly, absence of Listeriolysin O in Lm prevents DEVs from inducing this anti-viral state. In summary, these data underscore a new mechanism of communication between bacteria-infected DC during infection as they alert neighboring, uninfected DCs to promote antiviral responses.


Assuntos
Vesículas Extracelulares , Listeria monocytogenes , Listeriose , Ácidos Nucleicos , Antivirais/metabolismo , Citocinas/metabolismo , Células Dendríticas , Vesículas Extracelulares/metabolismo , Humanos , Imunidade Inata , Ácidos Nucleicos/metabolismo
6.
Ann Rheum Dis ; 81(8): 1096-1105, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35459695

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) immunopathogenesis revolves around the presentation of poorly characterised self-peptides by human leucocyte antigen (HLA)-class II molecules on the surface of antigen-presenting cells to autoreactive CD4 +T cells. Here, we analysed the HLA-DR-associated peptidome of synovial tissue (ST) and of dendritic cells (DCs) pulsed with synovial fluid (SF) or ST, to identify potential T-cell epitopes for RA. METHODS: HLA-DR/peptide complexes were isolated from RA ST samples (n=3) and monocyte-derived DCs, generated from healthy donors carrying RA-associated shared epitope positive HLA-DR molecules and pulsed with RA SF (n=7) or ST (n=2). Peptide sequencing was performed by high-resolution mass spectrometry. The immunostimulatory capacity of selected peptides was evaluated on peripheral blood mononuclear cells from patients with RA (n=29) and healthy subjects (n=12) by flow cytometry. RESULTS: We identified between 103 and 888 HLA-DR-naturally presented peptides per sample. We selected 37 native and six citrullinated (cit)-peptides for stimulation assays. Six of these peptides increased the expression of CD40L on CD4 +T cells patients with RA, and specifically triggered IFN-γ expression on RA CD4 +T cells compared with healthy subjects. Finally, the frequency of IFN-γ-producing CD4 +T cells specific for a myeloperoxidase-derived peptide showed a positive correlation with disease activity. CONCLUSIONS: We significantly expanded the peptide repertoire presented by HLA-DR molecules in a physiologically relevant context, identifying six new epitopes recognised by CD4 +T cells from patients with RA. This information is important for a better understanding of the disease immunopathology, as well as for designing tolerising antigen-specific immunotherapies.


Assuntos
Artrite Reumatoide , Epitopos de Linfócito T , Antígenos HLA-DR , Humanos , Leucócitos Mononucleares , Peptídeos
7.
Neuropharmacology ; 212: 109058, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429504

RESUMO

Synaptic events are important to define treatment strategies for brain disorders. In the present paper, freshly obtained rat brain striatal minces were incubated under different times and conditions to determine dopamine biosynthesis, storage, and tyrosine hydroxylase phosphorylation. Remarkably, we found that endogenous dopamine spontaneously accumulated during tissue incubation at 37 °C ex vivo while dopamine synthesis simultaneously decreased. We analyzed whether these changes in brain dopamine biosynthesis and storage were linked to dopamine feedback inhibition of its synthesis-limiting enzyme tyrosine hydroxylase. The aromatic-l-amino-acid decarboxylase inhibitor NSD-1015 prevented both effects. As expected, dopamine accumulation was increased with l-DOPA addition or VMAT2-overexpression, and dopamine synthesis decreased further with added dopamine, the VMAT2 inhibitor tetrabenazine or D2 auto-receptor activation with quinpirole, accordingly to the known synaptic effects of these treatments. Phosphorylation activation and inhibition of tyrosine hydroxylase on Ser31 and Ser40 with okadaic acid, Sp-cAMP and PD98059 also exerted the expected effects. However, no clear-cut association was found between dopamine feedback inhibition of its own biosynthesis and changes of tyrosine hydroxylase phosphorylation, assessed by Western blot and mass spectrometry. The later technique also revealed a new Thr30 phosphorylation in rat tyrosine hydroxylase. Our methodological assessment of brain dopamine synthesis and storage dynamics ex vivo could be applied to predict the in vivo effects of pharmacological interventions in animal models of dopamine-related disorders.


Assuntos
Dopamina , Tirosina 3-Mono-Oxigenase , Animais , Encéfalo/metabolismo , Corpo Estriado , Dopamina/farmacologia , Retroalimentação , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo
8.
J Proteomics ; 251: 104409, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-34758407

RESUMO

Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows. Aiming to investigate the effect of different variables in the performance of proteome wide phosphoprotein analysis protocols, ProteoRed-ISCIII and EuPA launched the Proteomics Multicentric Experiment 11 (PME11). A reference sample consisting of a yeast protein extract spiked in with different amounts of a phosphomix standard (Sigma/Merck) was distributed to 31 laboratories around the globe. Thirty-six datasets from 23 laboratories were analyzed. Our results indicate the suitability of the PME11 reference sample to benchmark and optimize phosphoproteomics strategies, weighing the influence of different factors, as well as to rank intra and inter laboratory performance.


Assuntos
Proteoma , Proteômica , Laboratórios , Fosfoproteínas/análise , Fosforilação , Proteoma/análise , Proteômica/métodos , Padrões de Referência , Reprodutibilidade dos Testes
9.
J Pathol ; 256(1): 83-92, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599510

RESUMO

As acute pancreatitis progresses to the severe form, a life-threatening systemic inflammation is triggered. Although the mechanisms involved in this process are not yet well understood, it has been proposed that circulating exosomes may be involved in the progression of inflammation from the pancreas to distant organs. Here, the inflammatory capacity and protein profile of plasma exosomes obtained during the first 24 h of hospitalization of patients diagnosed with acute pancreatitis were characterized and compared with the final severity of the disease. We found that the final severity of the disease strongly correlates with the inflammatory capacity of exosomes in the early stages of acute pancreatitis. Exosomes isolated from patients with mild pancreatitis had no effect on macrophages, while exosomes isolated from patients with severe pancreatitis triggered NFκB activation, TNFα and IL1ß expression, and free radical generation. To delve deeper into the mechanism involved, we performed a proteomic analysis of the different exosomes that allowed us to identify different groups of proteins whose concentration was also correlated with the clinical classification of pancreatitis. In particular, an increase in the amount of S100A8 and S100A9 carried by exosomes of severe pancreatitis suggests that the mechanism of action of exosomes is mediated by the effect of these proteins on NADPH oxidase. This enzyme is activated by S100A8/S100A9, thus generating free radicals and promoting an inflammatory response. Along these lines, we observed that inhibition of this enzyme abolished all the pro-inflammatory effects of exosomes from severe pancreatitis. All this suggests that the systemic effects, and therefore the final severity of acute pancreatitis, are determined by the content of circulating exosomes generated in the early hours of the process. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Progressão da Doença , Exossomos/metabolismo , Inflamação/patologia , Pâncreas/patologia , Pancreatite/patologia , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Exossomos/patologia , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Pâncreas/metabolismo , Pancreatite/metabolismo , Proteômica/métodos , Transdução de Sinais/fisiologia
10.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33674382

RESUMO

The primary task of a spermatozoon is to deliver its nuclear payload to the egg to form the next-generation zygote. With polyandry repeatedly evolving in the animal kingdom, however, sperm competition has become widespread, with the highest known intensities occurring in fish. Yet, the molecular controls regulating spermatozoon swimming performance in these organisms are largely unknown. Here, we show that the kinematic properties of postactivated piscine spermatozoa are regulated through a conserved trafficking mechanism whereby a peroxiporin ortholog of mammalian aquaporin-8 (Aqp8bb) is inserted into the inner mitochondrial membrane to facilitate H2O2 efflux in order to maintain ATP production. In teleosts from more ancestral lineages, such as the zebrafish (Danio rerio) and the Atlantic salmon (Salmo salar), in which spermatozoa are activated in freshwater, an intracellular Ca2+-signaling directly regulates this mechanism through monophosphorylation of the Aqp8bb N terminus. In contrast, in more recently evolved marine teleosts, such the gilthead seabream (Sparus aurata), in which spermatozoa activation occurs in seawater, a cross-talk between Ca2+- and oxidative stress-activated pathways generate a multiplier regulation of channel trafficking via dual N-terminal phosphorylation. These findings reveal that teleost spermatozoa evolved increasingly sophisticated detoxification pathways to maintain swimming performance under a high osmotic stress, and provide insight into molecular traits that are advantageous for postcopulatory sexual selection.


Assuntos
Aquaporinas/metabolismo , Sinalização do Cálcio , Salmo salar/metabolismo , Dourada/metabolismo , Espermatozoides/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Aquaporinas/genética , Masculino , Salmo salar/genética , Dourada/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
11.
Arterioscler Thromb Vasc Biol ; 41(1): 478-490, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147989

RESUMO

OBJECTIVE: Obesity is associated with a proinflammatory and prothrombotic state that supports atherosclerosis progression. The goal of this study was to gain insights into the phosphorylation events related to platelet reactivity in obesity and identify platelet biomarkers and altered activation pathways in this clinical condition. Approach and Results: We performed a comparative phosphoproteomic analysis of resting platelets from obese patients and their age- and gender-matched lean controls. The phosphoproteomic data were validated by mechanistic, functional, and biochemical assays. We identified 220 differentially regulated phosphopeptides, from at least 175 proteins; interestingly, all were up-regulated in obesity. Most of the altered phosphoproteins are involved in SFKs (Src-family kinases)-related signaling pathways, cytoskeleton reorganization, and vesicle transport, some of them validated by targeted mass spectrometry. To confirm platelet dysfunction, flow cytometry assays were performed in whole blood indicating higher surface levels of GP (glycoprotein) VI and CLEC (C-type lectin-like receptor) 2 in platelets from obese patients correlating positively with body mass index. Receiver operator characteristics curves analysis suggested a much higher sensitivity for GPVI to discriminate between obese and lean individuals. Indeed, we also found that obese platelets displayed more adhesion to collagen-coated plates. In line with the above data, soluble GPVI levels-indicative of higher GPVI signaling activation-were almost double in plasma from obese patients. CONCLUSIONS: Our results provide novel information on platelet phosphorylation changes related to obesity, revealing the impact of this chronic pathology on platelet reactivity and pointing towards the main signaling pathways dysregulated.


Assuntos
Plaquetas/metabolismo , Proteínas Sanguíneas/metabolismo , Obesidade/sangue , Fosfoproteínas/sangue , Ativação Plaquetária , Proteômica , Transdução de Sinais , Adulto , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico , Fosforilação , Índice de Gravidade de Doença , Regulação para Cima
12.
Metallomics ; 12(11): 1656-1678, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206086

RESUMO

Manganese (Mn) is essential for living organisms, playing an important role in nervous system function. Nevertheless, chronic and/or acute exposure to this metal, especially during early life stages, can lead to neurotoxicity and dementia by unclear mechanisms. Thus, based on previous works of our group with yeast and zebrafish, we hypothesized that the mechanisms mediating manganese-induced neurotoxicity can be associated with the alteration of protein metabolism. These mechanisms may also depend on the chemical speciation of manganese. Therefore, the current study aimed at investigating the mechanisms mediating the toxic effects of manganese in primary cultures of cerebellar granule neurons (CGNs). By exposing cultured CGNs to different chemical species of manganese ([[2-[(dithiocarboxy)amino]ethyl]carbamodithioato]](2-)-kS,kS']manganese, named maneb (MB), and [[1,2-ethanediylbis[carbamodithioato]](2-)]manganese mixture with [[1,2-ethanediylbis[carbamodithioato]](2-)]zinc, named mancozeb (MZ), and manganese chloride (MnCl2)), and using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, we observed that both MB and MZ induced similar cytotoxicity (LC50∼ 7-9 µM), which was higher than that of MnCl2 (LC50∼ 27 µM). Subsequently, we applied systems biology approaches, including metallomics, proteomics, gene expression and bioinformatics, and revealed that independent of chemical speciation, for non-cytotoxic concentrations (0.3-3 µM), Mn-induced neurotoxicity in CGNs is associated with metal dyshomeostasis and impaired protein metabolism. In this way, we verified that MB induced more post-translational alterations than MnCl2, which can be a plausible explanation for cytotoxic differences between both chemical species. The metabolism of proteins is one of the most energy consuming cellular processes and its impairment appears to be a key event of some cellular stress processes reported separately in other studies such as cell cycle arrest, energy impairment, cell signaling, excitotoxicity, immune response, potential protein accumulation and apoptosis. Interestingly, we verified that Mn-induced neurotoxicity shares pathways associated with the development of Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, and Parkinson's disease. This has been observed in baker's yeast and zebrafish suggesting that the mode of action of Mn may be evolutionarily conserved.


Assuntos
Cerebelo/patologia , Manganês/toxicidade , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Neurotoxinas/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Cobre/metabolismo , Grânulos Citoplasmáticos/metabolismo , Homeostase/efeitos dos fármacos , Ferro/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Praguicidas/toxicidade , Potássio/metabolismo , Proteoma/metabolismo , Proteômica
13.
Front Cell Dev Biol ; 8: 660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850799

RESUMO

Defects in mitochondrial function lead to severe neuromuscular orphan pathologies known as mitochondrial disease. Among them, Leigh Syndrome is the most common pediatric presentation, characterized by symmetrical brain lesions, hypotonia, motor and respiratory deficits, and premature death. Mitochondrial diseases are characterized by a marked anatomical and cellular specificity. However, the molecular determinants for this susceptibility are currently unknown, hindering the efforts to find an effective treatment. Due to the complex crosstalk between mitochondria and their supporting cell, strategies to assess the underlying alterations in affected cell types in the context of mitochondrial dysfunction are critical. Here, we developed a novel virus-based tool, the AAV-mitoTag viral vector, to isolate mitochondria from genetically defined cell types. Expression of the AAV-mitoTag in the glutamatergic vestibular neurons of a mouse model of Leigh Syndrome lacking the complex I subunit Ndufs4 allowed us to assess the proteome and acetylome of a subset of susceptible neurons in a well characterized model recapitulating the human disease. Our results show a marked reduction of complex I N-module subunit abundance and an increase in the levels of the assembly factor NDUFA2. Transiently associated non-mitochondrial proteins such as PKCδ, and the complement subcomponent C1Q were also increased in Ndufs4-deficient mitochondria. Furthermore, lack of Ndufs4 induced ATP synthase complex and pyruvate dehydrogenase (PDH) subunit hyperacetylation, leading to decreased PDH activity. We provide novel insight on the pathways involved in mitochondrial disease, which could underlie potential therapeutic approaches for these pathologies.

14.
Thromb Haemost ; 120(2): 262-276, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31901221

RESUMO

C-type lectin-like receptor 2 (CLEC-2) plays a crucial role in different platelet-related physiological and pathological processes. It signals through a tyrosine kinase-mediated pathway that is highly dependent on the positive feedback exerted by the platelet-derived secondary mediators, adenosine diphosphate (ADP) and thromboxane A2 (TXA2). Here, we aimed to analyze the tyrosine phosphoproteome of platelets activated with the CLEC-2 agonist rhodocytin to identify relevant phosphorylated tyrosine residues (p-Tyr) and proteins involved in platelet activation downstream of this receptor. We identified 363 differentially p-Tyr residues, corresponding to the majority of proteins previously known to participate in CLEC-2 signaling and also novel ones, including adaptors (e.g., DAPP1, Dok1/3, CASS4, Nck1/2), kinases/phosphatases (e.g., FAK1, FES, FGR, JAK2, SHIP2), and membrane proteins (e.g., G6F, JAM-A, PECAM-1, TLT-1). To elucidate the contribution of ADP and TXA2 at different points of the CLEC-2 signaling cascade, we evaluated p-Tyr levels of residues identified in the analysis and known to be essential for the catalytic activity of kinases Syk(p-Tyr525+526) and Src(p-Tyr419), and for PLCγ2 activity (p-Tyr759). We demonstrated that Syk phosphorylation at Tyr525+526 also happens in the presence of ADP and TXA2 inhibitors, which is not the case for Src-pTyr419 and PLCγ2-pTyr759. Kinetics studies for the three phosphoproteins show some differences in the phosphorylation profile. Ca2+ mobilization assays confirmed the relevance of ADP and TXA2 for full CLEC-2-mediated platelet activation. The present study provides significant insights into the intracellular events that take place following CLEC-2 activation in platelets, contributing to elucidate in detail the CLEC-2 signalosome.


Assuntos
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Fosfoproteínas/química , Transdução de Sinais , Tirosina/química , Difosfato de Adenosina/química , Adulto , Cálcio/química , Cálcio/metabolismo , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Fosforilação , Fosfotirosina/química , Ativação Plaquetária , Agregação Plaquetária , Proteoma , Tromboxano A2/química , Adulto Jovem
15.
J Proteomics ; 195: 88-97, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677554

RESUMO

Lipid rafts are membrane microdomains that have been proposed to play an important role in several platelet-signalling cascades, including those mediated by the receptors Glycoprotein VI (GPVI), and C-type lectin domain family 1 member B (CLEC-2), both involved in thrombus formation. We have performed a LC-MS/MS proteomic analysis of lipid rafts isolated from platelets activated through GPVI and CLEC-2 as well as from resting platelets. Our aim was to determine the magnitude of changes in lipid rafts protein composition and to elucidate the relevance of these alterations in platelet function. A number of relevant signalling proteins were found enriched in lipid rafts following platelet activation (such as the tyrosine protein kinases Fyn, Lyn and Yes; the G proteins G(i) and G(z); and cAMP protein kinase). Interestingly, our results indicate that the relative enrichment of lipid rafts in these signalling proteins may not be a consequence of protein translocation to these domains upon platelet stimulation, but the result of a massive loss in cytoskeletal proteins after platelet activation. Thus, this study may help to better understand the effects of platelet activation in the reorganization of lipid rafts and set the basis for further proteomic studies of these membrane microdomains in platelets. SIGNIFICANCE: We performed the first proteomic comparative analysis of lipid rafts- protein composition in platelets activated through GPVI and CLEC-2 receptors and in resting state. We identified a number of signalling proteins essential for platelet activation relatively enriched in platelets activated through both receptors, and we show that lipid rafts reorganization upon platelet activation leads to a loss in cytoskeletal proteins, highly associated to these domains in resting platelets.


Assuntos
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Transdução de Sinais , Plaquetas/citologia , Humanos
16.
Proteomics ; 19(1-2): e1800248, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30536591

RESUMO

Plasma-derived extracellular vesicles (EVs) have been extensively described as putative biomarkers in different diseases. Interestingly, increased levels of EVs subpopulations are well known to associate with obesity. The goal of this study is to identify EVs-derived biomarkers in plasma from obese patients in order to predict the development of pathological events associated with obesity. Samples are obtained from 22 obese patients and their lean-matched controls are divided into two cohorts: one for a 2D fluorescence difference gel electrophoresis (2D-DIGE)-based study, and the other one for a label free LC-MS/MS-based approach. EVs are isolated following a serial ultracentrifugation protocol. Twenty-two and 23 differentially regulated features are detected from 2D-DIGE and label free LC-MS/MS, respectively; most of them involve in the coagulation and complement cascades. Remarkably, there is an upregulation of complement C4, complement C3, and fibrinogen in obese patients following both approaches, the latter two also validated by 2D-western-blotting in an independent cohort. These results correlate with a proinflammatory and prothrombotic state of those individuals. On the other hand, a downregulation of adiponectin leading to an increased risk of suffering cardiovascular diseases has been shown. The results suggest the relevance of plasma-derived-EVs proteins as a source of potential biomarkers for the development of atherothrombotic events in obesity.


Assuntos
Doenças Cardiovasculares/metabolismo , Vesículas Extracelulares/metabolismo , Obesidade/metabolismo , Proteômica/métodos , Western Blotting , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Feminino , Humanos , Masculino , Espectrometria de Massas em Tandem
17.
Bioinformatics ; 35(8): 1404-1413, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219844

RESUMO

MOTIVATION: Protein function is regulated by post-translational modifications (PTMs) that may act individually or interact with others in a phenomenon termed PTM cross-talk. Multiple databases have been dedicated to PTMs, including recent initiatives oriented towards the in silico prediction of PTM interactions. The study of PTM cross-talk ultimately requires experimental evidence about whether certain PTMs coexist in a single protein molecule. However, available resources do not assist researchers in the experimental detection of co-modified peptides. RESULTS: Herein, we present TCellXTalk, a comprehensive database of phosphorylation, ubiquitination and acetylation sites in human T cells that supports the experimental detection of co-modified peptides using targeted or directed mass spectrometry. We demonstrate the efficacy of TCellXTalk and the strategy presented here in a proof of concept experiment that enabled the identification and quantification of 15 co-modified (phosphorylated and ubiquitinated) peptides from CD3 proteins of the T-cell receptor complex. To our knowledge, these are the first co-modified peptide sequences described in this widely studied cell type. Furthermore, quantitative data showed distinct dynamics for co-modified peptides upon T cell activation, demonstrating differential regulation of co-occurring PTMs in this biological context. Overall, TCellXTalk facilitates the experimental detection of co-modified peptides in human T cells and puts forward a novel and generic strategy for the study of PTM cross-talk. AVAILABILITY AND IMPLEMENTATION: TCellXTalk is available at https://www.tcellxtalk.org. Source Code is available at https://bitbucket.org/lp-csic-uab/tcellxtalk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Proteína Pós-Traducional , Linfócitos T , Sequência de Aminoácidos , Humanos , Peptídeos , Proteínas
18.
J Diabetes Res ; 2018: 6165303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854824

RESUMO

Urinary proteome was analyzed and quantified by tandem mass tag (TMT) labeling followed by bioinformatics analysis to study diabetic nephropathy (DN) pathophysiology and to identify biomarkers of a clinical outcome. We included type 2 diabetic normotensive non-obese males with (n = 9) and without (n = 11) incipient DN (microalbuminuria). Sample collection included blood and urine at baseline (control and DN basal) and, in DN patients, after 3 months of losartan treatment (DN treated). Urinary proteome analysis identified 166 differentially abundant proteins between controls and DN patients, 27 comparing DN-treated and DN-basal patients, and 182 between DN-treated patients and controls. The mathematical modeling analysis predicted 80 key proteins involved in DN pathophysiology and 15 in losartan effect, a total of 95 proteins. Out of these 95, 7 are involved in both processes. VCAM-1 and neprilysin stand out of these 7 for being differentially expressed in the urinary proteome. We observed an increase of VCAM-1 urine levels in DN-basal patients compared to diabetic controls and an increase of urinary neprilysin in DN-treated patients with persistent albuminuria; the latter was confirmed by ELISA. Our results point to neprilysin and VCAM-1 as potential candidates in DN pathology and treatment.


Assuntos
Albuminúria/urina , Nefropatias Diabéticas/urina , Neprilisina/urina , Proteoma/metabolismo , Molécula 1 de Adesão de Célula Vascular/urina , Idoso , Biomarcadores/urina , Diabetes Mellitus Tipo 2/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Urinálise
19.
Redox Biol ; 14: 164-177, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28942194

RESUMO

Cancer cells exhibit mitochondrial cholesterol (mt-cholesterol) accumulation, which contributes to cell death resistance by antagonizing mitochondrial outer membrane (MOM) permeabilization. Hepatocellular mt-cholesterol loading, however, promotes steatohepatitis, an advanced stage of chronic liver disease that precedes hepatocellular carcinoma (HCC), by depleting mitochondrial GSH (mGSH) due to a cholesterol-mediated impairment in mGSH transport. Whether and how HCC cells overcome the restriction of mGSH transport imposed by mt-cholesterol loading to support mGSH uptake remains unknown. Although the transport of mGSH is not fully understood, SLC25A10 (dicarboxylate carrier, DIC) and SLC25A11 (2-oxoglutarate carrier, OGC) have been involved in mGSH transport, and therefore we examined their expression and role in HCC. Unexpectedly, HCC cells and liver explants from patients with HCC exhibit divergent expression of these mitochondrial carriers, with selective OGC upregulation, which contributes to mGSH maintenance. OGC but not DIC downregulation by siRNA depleted mGSH levels and sensitized HCC cells to hypoxia-induced ROS generation and cell death as well as impaired cell growth in three-dimensional multicellular HCC spheroids, effects that were reversible upon mGSH replenishment by GSH ethyl ester, a membrane permeable GSH precursor. We also show that OGC regulates mitochondrial respiration and glycolysis. Moreover, OGC silencing promoted hypoxia-induced cardiolipin peroxidation, which reversed the inhibition of cholesterol on the permeabilization of MOM-like liposomes induced by Bax or Bak. Genetic OGC knockdown reduced the ability of tumor-initiating stem-like cells to induce liver cancer. These findings underscore the selective overexpression of OGC as an adaptive mechanism of HCC to provide adequate mGSH levels in the face of mt-cholesterol loading and suggest that OGC may be a novel therapeutic target for HCC treatment.


Assuntos
Colesterol/metabolismo , Glutationa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transportadores de Ácidos Dicarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Ratos
20.
Front Microbiol ; 8: 723, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28522991

RESUMO

The spirochetes Brachyspira hyodysenteriae and B. pilosicoli are pig intestinal pathogens that are the causative agents of swine dysentery (SD) and porcine intestinal spirochaetosis (PIS), respectively. Although some inactivated bacterin and recombinant vaccines have been explored as prophylactic treatments against these species, no effective vaccine is yet available. Immunoproteomics approaches hold the potential for the identification of new, suitable candidates for subunit vaccines against SD and PIS. These strategies take into account the gene products actually expressed and present in the cells, and thus susceptible of being targets of immune recognition. In this context, we have analyzed the immunogenic pattern of two B. pilosicoli porcine isolates (the Spanish farm isolate OLA9 and the commercial P43/6/78 strain) and one B. hyodysenteriae isolate (the Spanish farm V1). The proteins from the Brachyspira lysates were fractionated by preparative isoelectric focusing, and the fractions were analyzed by Western blot with hyperimmune sera from challenged pigs. Of the 28 challenge-specific immunoreactive bands detected, 21 were identified as single proteins by MS, while the other 7 were shown to contain several major proteins. None of these proteins were detected in the control immunoreactive bands. The proteins identified included 11 from B. hyodysenteriae and 28 from the two B. pilosicoli strains. Eight proteins were common to the B. pilosicoli strains (i.e., elongation factor G, aspartyl-tRNA synthase, biotin lipoyl, TmpB outer membrane protein, flagellar protein FlaA, enolase, PEPCK, and VspD), and enolase and PEPCK were common to both species. Many of the identified proteins were flagellar proteins or predicted to be located on the cell surface and some of them had been previously described as antigenic or as bacterial virulence factors. Here we report on the identification and semiquantitative data of these immunoreactive proteins which constitute a unique antigen collection from these bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...