Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1860(5): 868-878, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26476135

RESUMO

BACKGROUND: Conformational changes coupled to ligand binding constitute the structural and energetics basis underlying cooperativity, allostery and, in general, protein regulation. These conformational rearrangements are associated with heat capacity changes. ITC is a unique technique for studying binding interactions because of the simultaneous determination of the binding affinity and enthalpy, and for providing the best estimates of binding heat capacity changes. SCOPE OF REVIEW: Still controversial issues in ligand binding are the discrimination between the "conformational selection model" and the "induced fit model", and whether or not conformational changes lead to temperature dependent apparent binding heat capacities. The assessment of conformational changes associated with ligand binding by ITC is discussed. In addition, the "conformational selection" and "induced fit" models are reconciled, and discussed within the context of intrinsically (partially) unstructured proteins. MAJOR CONCLUSIONS: Conformational equilibrium is a major contribution to binding heat capacity changes. A simple model may explain both conformational selection and induced fit scenarios. A temperature-independent binding heat capacity does not necessarily indicate absence of conformational changes upon ligand binding. ITC provides information on the energetics of conformational changes associated with ligand binding (and other possible additional coupled equilibria). GENERAL SIGNIFICANCE: Preferential ligand binding to certain protein states leads to an equilibrium shift that is reflected in the coupling between ligand binding and additional equilibria. This represents the structural/energetic basis of the widespread dependence of ligand binding parameters on temperature, as well as pH, ionic strength and the concentration of other chemical species.


Assuntos
Proteínas de Bactérias/química , Modelos Químicos , Nucleoplasminas/química , Receptores de LDL/química , Regulação Alostérica , Sítios de Ligação , Flavodoxina/química , Protease de HIV/química , Temperatura Alta , Humanos , Cinética , Ligantes , Ligação Proteica , Conformação Proteica , Termodinâmica , Proteínas não Estruturais Virais/química
2.
Biochemistry ; 50(40): 8703-11, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21910456

RESUMO

Flavodoxins are bacterial electron transport proteins whose redox competence is due to the presence of a tightly but noncovalently bound FMN molecule. While the thermodynamics of the complex are understood, the mechanism of association between the apoflavodoxin and the redox cofactor is not so clear. We investigate here the mechanism of FMN binding to the apoflavodoxin from Helicobacter pylori, an essential protein that is being used as a target to develop antimicrobials. This flavodoxin is structurally peculiar as it lacks the typical bulky residue interacting with the FMN re face but bears instead a small alanine. FMN binding is biphasic, regardless of the presence of phosphate molecules in solution, while riboflavin binding takes place in a single step, the rate constant of which coincides with the fast phase of FMN binding. A mutational study at the isoalloxazine and phosphate subsites for FMN binding clearly indicates that FMN association is always limited by interaction with the isoalloxazine subsite because mutating residues that interact with the phosphate moiety of FMN in the native complex hardly changes the observed rate constants and amplitudes. In contrast, replacing tyr92, which interacts with the isoalloxazine, greatly lowers the rate constants. Our analysis indicates that the two FMN binding phases observed are related neither with alternative or sequential interaction with the two binding subsites nor with the presence of bound phosphate. It is possible that they reflect the intrinsic conformational heterogeneity of the apoflavodoxin ensemble.


Assuntos
Apoproteínas/química , Apoproteínas/metabolismo , Proteínas de Bactérias/química , Mononucleotídeo de Flavina/metabolismo , Flavodoxina/química , Flavodoxina/metabolismo , Helicobacter pylori/metabolismo , Apoproteínas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Mononucleotídeo de Flavina/química , Flavodoxina/genética , Helicobacter pylori/química , Helicobacter pylori/genética , Cinética , Modelos Moleculares , Ligação Proteica
3.
Curr Protein Pept Sci ; 12(4): 325-38, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21401523

RESUMO

Cations are specifically recognized by numerous proteins. Cations may play a structural role, as cofactors stabilizing their binding partners, or a functional role, as cofactors activating their binding partners or being themselves involved in enzymatic reactions. Despite their small size, their charge density and their specific interaction with highly charged residues allow them to induce significant conformational changes on their binding proteins. The protein conformational change induced by cation binding may be as large as to account for the complete folding of a protein (as evidenced in Hepatitis C NS3 protease, or human rhinovirus 2A protease), and they may also trigger oligomerization (as in calcium-binding protein 1). Especially intriguing is the ability of cation-binding proteins of discriminating between very similar cations. In particular, calcium and magnesium are recognized by proteins with markedly different binding affinities and cause significantly different conformational changes and stabilization effects in the binding proteins (as in the fifth ligand binding repeat of the LDL receptor binding domain, calcium-binding protein 1, or parvalbumin). This article summarizes recent findings on the structural and energetic impact of cation binding to different proteins. A general framework can be envisaged in which cations can be considered as a special type of allosteric effectors able to modulate the functional properties of proteins, in particular the ability to interact with biological targets, by altering their conformational equilibrium.


Assuntos
Cátions/química , Proteínas/química , Termodinâmica , Modelos Moleculares , Estrutura Molecular , Dobramento de Proteína
4.
Enzyme Microb Technol ; 26(7): 509-515, 2000 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10771054

RESUMO

Epoxy supports (Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. To achieve a significant multipoint covalent attachment, the control of the experimental conditions was found to be critical. A three-step immobilization/stabilization procedure is here proposed: 1) the enzyme is firstly covalently immobilized under very mild experimental conditions (e.g. pH 7.0 and 20 degrees C); 2) the already immobilized enzyme is further incubated under more drastic conditions (higher pH values, longer incubation periods, etc.) to "facilitate" the formation of new covalent linkages between the immobilized enzyme molecule and the support; 3) the remaining groups of the support are blocked to stop any additional interaction between the enzyme and the support. Progressive establishment of new enzyme-support attachments was showed by the progressive irreversible covalent immobilization of several subunits of multi-subunits proteins (all non-covalent structures contained in crude extracts of different microorganism, penicillin G acylase and chymotrypsin). This multipoint covalent attachment enabled the significant thermostabilization of two relevant enzymes, (compared with the just immobilized derivatives): chymotrypsin (5-fold factor) and penicillin G acylase (18-fold factor). Bearing in mind that this stabilization was additive to that achieved by conventional immobilization, the final stabilization factor become 100-fold comparing soluble penicillin G acylase and optimal derivative. These stabilizations were observed also when the inactivations were promoted by the enzyme exposure to drastic pH values or the presence of cosolvents.

5.
Biotechnol Bioeng ; 68(1): 98-105, 2000 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-10699877

RESUMO

New tailor-made anionic exchange resins have been prepared, based on films of large polyethylenimine polymers (e.g., MW 25,000) completely coating, via covalent immobilization, the surface of different porous supports (agarose, silica, polymeric resins). Most proteins contained in crude extracts from different sources have been very strongly adsorbed on them. Ionic exchange properties of such composites strongly depend on the size of polyethylenimine polymers as well as on the exact conditions of the covalent coating of the solids with the polymer. On the contrary, similar coating protocols yield similar matrices by using different porous supports as starting material. For example, 77% of all proteins contained in crude extracts from Escherichia coli were adsorbed, at low ionic strength, on the best matrices, and less than 15% of the adsorbed proteins were eluted from the support in the presence of 0.3 M NaCl. Under these conditions, 100% of the adsorbed proteins were eluted from conventional DEAE supports. Such polyethylenimine-support composites were also very suitable to perform very strong and nondistorting reversible immobilization of industrial enzymes. For example, lipase from Candida rugosa (CRL), beta-galactosidase from Aspergillus oryzae and D-amino acid oxidase (DAAO) from Rhodotorula gracilis, were adsorbed on such matrices in a few minutes at pH 7.0 and 4 degrees C. Immobilized enzymes preserved 100% of catalytic activity and remained fully immobilized in 0.2 M NaCl. In addition to that, CRL and DAAO were highly stabilized upon immobilization. Stabilization of DAAO, a dimeric enzyme, seems to be due to the involvement of both enzyme subunits in the ionic adsorption.


Assuntos
Resinas de Troca Aniônica , Biotecnologia/métodos , Enzimas Imobilizadas , Polietilenoimina , Adsorção
6.
Biomacromolecules ; 1(4): 739-45, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11710205

RESUMO

Multifunctional supports containing epoxy groups are here proposed as a second generation of activated supports for covalent immobilization of enzymes following the epoxy chemistry on any type of support (hydrophobic or hydrophilic ones) under very mild experimental conditions (e.g., low ionic strength, neutral pH values, and low temperatures). These multifunctional supports have been easily prepared by modifying a small fraction (10-20%) of the epoxy groups contained in commercial epoxy supports. In this way, additional groups that were able to physically adsorb proteins (e.g., cationic or anionic groups, metal chelate, phenyl boronate) are generated on the support surface. The covalent immobilization of proteins on these supports proceeds via their initial physical adsorption on the supports (via different structural features). Then, "intramolecular" covalent linkages between some nucleophilic groups of the adsorbed enzyme (e.g., amino, thiol, or hydroxy groups) and the dense layer of nearby epoxy groups on the support are established. This two-step covalent immobilization dramatically improves the very low reactivity of epoxy groups toward nonadsorbed proteins. In this way, all other relevant practical advantages of epoxy groups for protein immobilization (their high stability and their ability to form very strong linkages with several nucleophilic enzyme residues with minimal chemical modification) can be an object of universal exploitation. The use of these new multifunctional supports exhibits important advantages regarding immobilization of enzymes previously adsorbed on hydrophobic homofunctional epoxy supports: (i) hydrophilic supports can also be used for immobilization of industrial enzymes; (ii) immobilization can also be carried out at low ionic strength; (iii) every protein contained in crude extracts from Escherichia coli and Acetobacter turbidans can be immobilized by sequentially using a set of different supports; (iv) in most cases, each enzyme has been immobilized on different supports, orientated through different structural features and very likely involving different areas of its surface. For example, three industrial enzymes (penicillin G acylase, lipase, and beta-galactosidase) could be immobilized through different strategies yielding immobilized derivatives with very different activities. The best derivatives preserved 75-100% of activity corresponding to the soluble enzymes used for immobilization, while in some cases a particular immobilization protocol promoted the full inactivation of the enzyme.


Assuntos
Enzimas Imobilizadas/química , Compostos de Epóxi/química , Proteínas/química , Acetobacter/química , Adsorção , Aminas/química , Proteínas de Bactérias/química , Quelantes , Cobre , Escherichia coli/química , Iminoácidos , Indicadores e Reagentes , Lipase/química , Penicilina Amidase/química , Polímeros , beta-Galactosidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...