Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 28(10): 2673-2688.e8, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484077

RESUMO

In the eukaryotic replisome, DNA unwinding by the Cdc45-MCM-Go-Ichi-Ni-San (GINS) (CMG) helicase requires a hexameric ring-shaped ATPase named minichromosome maintenance (MCM), which spools single-stranded DNA through its central channel. Not all six ATPase sites are required for unwinding; however, the helicase mechanism is unknown. We imaged ATP-hydrolysis-driven translocation of the CMG using cryo-electron microscopy (cryo-EM) and found that the six MCM subunits engage DNA using four neighboring protomers at a time, with ATP binding promoting DNA engagement. Morphing between different helicase states leads us to suggest a non-symmetric hand-over-hand rotary mechanism, explaining the asymmetric requirements of ATPase function around the MCM ring of the CMG. By imaging of a higher-order replisome assembly, we find that the Mrc1-Csm3-Tof1 fork-stabilization complex strengthens the interaction between parental duplex DNA and the CMG at the fork, which might support the coupling between DNA translocation and fork unwinding.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Helicases/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Eucariotos/enzimologia , Complexos Multienzimáticos/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , DNA/ultraestrutura , DNA Helicases/química , DNA Helicases/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Hidrólise , Modelos Moleculares , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo
2.
Nat Commun ; 9(1): 5061, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498216

RESUMO

Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase. A key step is the recruitment of GINS that requires the leading-strand polymerase Pol epsilon, composed of Pol2, Dpb2, Dpb3, Dpb4. While a truncation of the catalytic N-terminal Pol2 supports cell division, Dpb2 and C-terminal Pol2 (C-Pol2) are essential for viability. Dpb2 and C-Pol2 are non-catalytic modules, shown or predicted to be related to an exonuclease and DNA polymerase, respectively. Here, we present the cryo-EM structure of the isolated C-Pol2/Dpb2 heterodimer, revealing that C-Pol2 contains a DNA polymerase fold. We also present the structure of CMG/C-Pol2/Dpb2 on a DNA fork, and find that polymerase binding changes both the helicase structure and fork-junction engagement. Inter-subunit contacts that keep the helicase-polymerase complex together explain several cellular phenotypes. At least some of these contacts are preserved during Pol epsilon-dependent CMG assembly on path to origin firing, as observed with DNA replication reconstituted in vitro.


Assuntos
DNA Polimerase II/química , DNA Polimerase II/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/química , DNA/genética , DNA Polimerase II/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína
3.
Nat Commun ; 8(1): 2241, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269875

RESUMO

Eukaryotic origins of replication are licensed upon loading of the MCM helicase motor onto DNA. ATP hydrolysis by MCM is required for loading and the post-catalytic MCM is an inactive double hexamer that encircles duplex DNA. Origin firing depends on MCM engagement of Cdc45 and GINS to form the CMG holo-helicase. CMG assembly requires several steps including MCM phosphorylation by DDK. To understand origin activation, here we have determined the cryo-EM structures of DNA-bound MCM, either unmodified or phosphorylated, and visualize a phospho-dependent MCM element likely important for Cdc45 recruitment. MCM pore loops touch both the Watson and Crick strands, constraining duplex DNA in a bent configuration. By comparing our new MCM-DNA structure with the structure of CMG-DNA, we suggest how the conformational transition from the loaded, post-catalytic MCM to CMG might promote DNA untwisting and melting at the onset of replication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/ultraestrutura , DNA/ultraestrutura , Proteínas de Manutenção de Minicromossomo/ultraestrutura , Proteínas Nucleares/ultraestrutura , Conformação de Ácido Nucleico , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Microscopia Crioeletrônica , DNA/metabolismo , DNA Helicases , Proteínas de Ligação a DNA/metabolismo , Holoenzimas , Processamento de Imagem Assistida por Computador , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(16): 4141-4146, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373564

RESUMO

The replisome unwinds and synthesizes DNA for genome duplication. In eukaryotes, the Cdc45-MCM-GINS (CMG) helicase and the leading-strand polymerase, Pol epsilon, form a stable assembly. The mechanism for coupling DNA unwinding with synthesis is starting to be elucidated, however the architecture and dynamics of the replication fork remain only partially understood, preventing a molecular understanding of chromosome replication. To address this issue, we conducted a systematic single-particle EM study on multiple permutations of the reconstituted CMG-Pol epsilon assembly. Pol epsilon contains two flexibly tethered lobes. The noncatalytic lobe is anchored to the motor of the helicase, whereas the polymerization domain extends toward the side of the helicase. We observe two alternate configurations of the DNA synthesis domain in the CMG-bound Pol epsilon. We propose that this conformational switch might control DNA template engagement and release, modulating replisome progression.


Assuntos
DNA Helicases/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA , Células Eucarióticas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , DNA Helicases/genética , DNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
5.
J Mol Biol ; 428(9 Pt B): 1822-32, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-26829220

RESUMO

The MCM motor of the CMG helicase powers ahead of the eukaryotic replication machinery to unwind DNA, in a process that requires ATP hydrolysis. The reconstitution of DNA replication in vitro has established the succession of events that lead to replication origin activation by the MCM and recent studies have started to elucidate the structural basis of duplex DNA unwinding. Despite the exciting progress, how the MCM translocates on DNA remains a matter of debate.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Eucariotos/enzimologia , Proteínas de Manutenção de Minicromossomo/metabolismo , Trifosfato de Adenosina/metabolismo , Replicação do DNA , Eucariotos/metabolismo , Hidrólise , Modelos Biológicos , Modelos Moleculares , Conformação Proteica
6.
Nat Commun ; 7: 10708, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26888060

RESUMO

The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.


Assuntos
DNA Helicases/metabolismo , DNA/metabolismo , Eucariotos/enzimologia , Microscopia Crioeletrônica , DNA/genética , DNA/ultraestrutura , DNA Helicases/ultraestrutura , Replicação do DNA , Eucariotos/genética , Eucariotos/ultraestrutura
7.
EMBO Rep ; 16(7): 824-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26071602

RESUMO

The composition of the mitochondrial membrane is important for its architecture and proper function. Mitochondria depend on a tightly regulated supply of phospholipid via intra-mitochondrial synthesis and by direct import from the endoplasmic reticulum. The Ups1/PRELI-like family together with its mitochondrial chaperones (TRIAP1/Mdm35) represent a unique heterodimeric lipid transfer system that is evolutionary conserved from yeast to man. Work presented here provides new atomic resolution insight into the function of a human member of this system. Crystal structures of free TRIAP1 and the TRIAP1-SLMO1 complex reveal how the PRELI domain is chaperoned during import into the intermembrane mitochondrial space. The structural resemblance of PRELI-like domain of SLMO1 with that of mammalian phoshatidylinositol transfer proteins (PITPs) suggest that they share similar lipid transfer mechanisms, in which access to a buried phospholipid-binding cavity is regulated by conformationally adaptable loops.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Retículo Endoplasmático/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Fosfolipídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...