Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 42(2): 97-106, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15833660

RESUMO

In this paper, we compared the efficiency of polymer films, made of a poly(ethylene glycol) (PEG2,000)/poly(d,l-lactide) (PLA50) mixture, or a PEG2,000-PLA50 copolymer, to prevent adsorption of a model protein, the hen egg-white lysozyme (HEWL), at the air-water interface. This was achieved by analyzing the surface pressure/surface area curves, and the X-ray reflectivity data of the polymer films spread on a Langmuir trough, obtained in absence or in presence of the protein. For both the mixture and the copolymer, the amount of protein adsorbed at the air-water interface decreases when the density of the polymer surface coverage increases. It was shown that even in a condensed state, the polymer film made by the mixture can not totally prevent HEWL molecules to adsorb and penetrate the polymer mixed film, but however, protein molecules would not be directly exposed to the more hydrophobic phase, i.e. the air phase. It was also shown that the configuration adopted by the copolymer at the interface in its condensed state would prevent adsorption of HEWL molecules for several hours; this would be due in particular to the presence of PEG segments in the interfacial film.


Assuntos
Coloides/química , Ácido Láctico/química , Muramidase/química , Polietilenoglicóis/química , Polímeros/química , Adsorção , Ar , Animais , Fenômenos Biofísicos , Biofísica , Galinhas , Clara de Ovo , Cinética , Ácido Láctico/metabolismo , Microscopia de Força Atômica , Poliésteres , Polímeros/metabolismo , Pressão , Proteínas/química , Temperatura , Fatores de Tempo , Água/química , Raios X
2.
J Colloid Interface Sci ; 266(1): 74-81, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12957584

RESUMO

Adsorption of lysozyme at the surface of a buffer solution at 25 degrees C, pH 7, and ionic strength 0.1 is studied under different denaturing conditions using on X-ray reflectometry technique. When the lysozyme is fully denatured with urea and dithiothreitol (DTT), its measured adsorption profile is very well explained by the scale law (z(-4/3)) profile theoretically predicted for polymer adsorption. When no denaturing agent is present, a monolayer is also produced, but the adsorption profile cannot be explained by a monolayer of nondenatured lysozyme; furthermore, it is close to the one obtained for lysozyme partially denatured with urea. A PMIRRAS study of native lysozyme adsorbed at the air-buffer interface shows that the secondary structure of the protein is modified: most of the alpha-helices are replaced by beta-sheets. In contrast, when the lysozyme is adsorbed below a monolayer of oleic acid at the air-buffer interface, that is, on a hydrophilic interface, the protein forms a monolayer whose thickness, 3.0 nm, is equal to one dimension of crystallized lysozyme. Under such conditions, the adsorbed protein is not denatured. Thus the hydrophobic nature of the air-water interface yields partial denaturation of the protein upon adsorption, but the disulfur bridges and beta-sheets prevent total denaturation.


Assuntos
Muramidase/química , Adsorção , Ar , Animais , Galinhas , Ovos , Conformação Proteica , Desnaturação Proteica , Propriedades de Superfície , Água
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(5 Pt 1): 051603, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12059566

RESUMO

We show the spontaneous formation of an antiparallel monolayer of diblock semifluorinated n-alkane molecules spread at the air-water interface. We used simultaneous measurements of surface pressure and surface potential versus molecular area and performed grazing x-ray reflectivity experiments to characterize the studied monolayer, which is obtained at almost zero surface pressure and precedes the formation of a bilayer at higher surface pressure. Its thickness, equal to 2.7 nm, was found to be independent of the molecular area. This behavior may be explained by van der Waals and electrostatic interactions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-11102009

RESUMO

We show, using surface pressure versus molecular area isotherms measurements and x-ray reflectivity, that the long diblock semifluorinated n-hexaeicosane molecules, F(CF2)(8)-(CH2)18H, form a stable smectic bilayer phase, noted M1, with a total thickness of 3. 3 nm, at an apparent molecular area about 0.3 nm(2), though in the bulk the used molecules do not form smectic phases at any temperature. We discuss different molecular packing models according to our experimental data and deduce that molecules are antiparallel with fluorinated chains outwards and interleaved hydrocarbon chains inwards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA