Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8054, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052795

RESUMO

Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species' cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.


Assuntos
Ácido Hialurônico , Neoplasias , Animais , Longevidade/genética , Mamíferos , Ratos-Toupeira/genética , Mutação
2.
Nature ; 621(7977): 196-205, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612507

RESUMO

Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.


Assuntos
Envelhecimento Saudável , Hialuronan Sintases , Ácido Hialurônico , Longevidade , Ratos-Toupeira , Animais , Camundongos , Ácido Hialurônico/biossíntese , Ácido Hialurônico/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/prevenção & controle , Camundongos Transgênicos , Ratos-Toupeira/genética , Longevidade/genética , Longevidade/imunologia , Longevidade/fisiologia , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Envelhecimento Saudável/genética , Envelhecimento Saudável/imunologia , Envelhecimento Saudável/fisiologia , Transgenes/genética , Transgenes/fisiologia , Transcriptoma , Neoplasias/genética , Neoplasias/prevenção & controle , Estresse Oxidativo , Gerociência , Rejuvenescimento/fisiologia
3.
Science ; 381(6658): eabq5693, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561875

RESUMO

Using DNA methylation profiles (n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species.


Assuntos
Metilação de DNA , Epigênese Genética , Mamíferos , Adulto , Animais , Humanos , Epigenoma , Genoma , Mamíferos/genética , Filogenia
4.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37215017

RESUMO

Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (NMR, Heterocephalus glaber ) contains abundant high-molecular-mass HA (HMM-HA) in its tissues, which contributes to this species' cancer resistance and possibly longevity. Here we report that abundant HMM-HA is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These species accumulate abundant HMM-HA by regulating the expression of genes involved in HA degradation and synthesis and contain unique mutations in these genes. The abundant high molecular weight HA may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic subterranean environment. HMM-HA may also be coopted to confer cancer resistance and longevity to subterranean mammals. Our work suggests that HMM-HA has evolved with subterranean lifestyle.

5.
Cell Metab ; 34(6): 836-856.e5, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580607

RESUMO

Mammals differ more than 100-fold in maximum lifespan. Here, we conducted comparative transcriptomics on 26 species with diverse lifespans. We identified thousands of genes with expression levels negatively or positively correlated with a species' maximum lifespan (Neg- or Pos-MLS genes). Neg-MLS genes are primarily involved in energy metabolism and inflammation. Pos-MLS genes show enrichment in DNA repair, microtubule organization, and RNA transport. Expression of Neg- and Pos-MLS genes is modulated by interventions, including mTOR and PI3K inhibition. Regulatory networks analysis showed that Neg-MLS genes are under circadian regulation possibly to avoid persistent high expression, whereas Pos-MLS genes are targets of master pluripotency regulators OCT4 and NANOG and are upregulated during somatic cell reprogramming. Pos-MLS genes are highly expressed during embryogenesis but significantly downregulated after birth. This work provides targets for anti-aging interventions by defining pathways correlating with longevity across mammals and uncovering circadian and pluripotency networks as central regulators of longevity.


Assuntos
Longevidade , Transcriptoma , Envelhecimento/fisiologia , Animais , Reparo do DNA , Longevidade/genética , Mamíferos/genética , Transcriptoma/genética
6.
Nat Aging ; 2(1): 46-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35368774

RESUMO

Naked mole rats (NMRs) live an exceptionally long life, appear not to exhibit age-related decline in physiological capacity and are resistant to age-related diseases. However, it has been unknown whether NMRs also evade aging according to a primary hallmark of aging: epigenetic changes. To address this question, we profiled n = 385 samples from 11 tissue types at loci that are highly conserved between mammalian species using a custom array (HorvathMammalMethylChip40). We observed strong epigenetic aging effects and developed seven highly accurate epigenetic clocks for several tissues (pan-tissue, blood, kidney, liver, skin clocks) and two dual-species (human-NMR) clocks. The skin clock correctly estimated induced pluripotent stem cells derived from NMR fibroblasts to be of prenatal age. The NMR epigenetic clocks revealed that breeding NMR queens age more slowly than nonbreeders, a feature that is also observed in some eusocial insects. Our results show that despite a phenotype of negligible senescence, the NMR ages epigenetically.


Assuntos
Metilação de DNA , Carrapatos , Animais , Humanos , Metilação de DNA/genética , Envelhecimento/genética , Epigênese Genética , Ratos-Toupeira/genética
7.
Nat Commun ; 13(1): 355, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039495

RESUMO

The naked mole-rat (NMR) is an exceptionally long-lived rodent that shows no increase of mortality with age, defining it as a demographically non-aging mammal. Here, we perform bisulfite sequencing of the blood of > 100 NMRs, assessing > 3 million common CpG sites. Unsupervised clustering based on sites whose methylation correlates with age reveals an age-related methylome remodeling, and we also observe a methylome information loss, suggesting that NMRs age. We develop an epigenetic aging clock that accurately predicts the NMR age. We show that these animals age much slower than mice and much faster than humans, consistent with their known maximum lifespans. Interestingly, patterns of age-related changes of clock sites in Tert and Prpf19 differ between NMRs and mice, but there are also sites conserved between the two species. Together, the data indicate that NMRs, like other mammals, epigenetically age even in the absence of demographic aging of this species.


Assuntos
Envelhecimento/genética , Epigênese Genética , Ratos-Toupeira/crescimento & desenvolvimento , Ratos-Toupeira/genética , Envelhecimento/sangue , Animais , Relógios Biológicos/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Demografia , Regulação da Expressão Gênica , Humanos , Camundongos , Ratos-Toupeira/sangue , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Telomerase/genética , Telomerase/metabolismo
8.
Cell Rep ; 37(6): 109965, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758328

RESUMO

The North American beaver is an exceptionally long-lived and cancer-resistant rodent species. Here, we report the evolutionary changes in its gene coding sequences, copy numbers, and expression. We identify changes that likely increase its ability to detoxify aldehydes, enhance tumor suppression and DNA repair, and alter lipid metabolism, potentially contributing to its longevity and cancer resistance. Hpgd, a tumor suppressor gene, is uniquely duplicated in beavers among rodents, and several genes associated with tumor suppression and longevity are under positive selection in beavers. Lipid metabolism genes show positive selection signals, changes in copy numbers, or altered gene expression in beavers. Aldh1a1, encoding an enzyme for aldehydes detoxification, is particularly notable due to its massive expansion in beavers, which enhances their cellular resistance to ethanol and capacity to metabolize diverse aldehyde substrates from lipid oxidation and their woody diet. We hypothesize that the amplification of Aldh1a1 may contribute to the longevity of beavers.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Aldeídos/metabolismo , Genes Supressores de Tumor , Genoma , Lipídeos/química , Longevidade , Família Aldeído Desidrogenase 1/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Filogenia , Roedores
9.
Sci Adv ; 7(44): eabj3284, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705500

RESUMO

DNA mutations in somatic cells have been implicated in the causation of aging, with longer-lived species having a higher capacity to maintain genome sequence integrity than shorter-lived species. In an attempt to directly test this hypothesis, we used single-cell whole-genome sequencing to analyze spontaneous and bleomycin-induced somatic mutations in lung fibroblasts of four rodent species with distinct maximum life spans, including mouse, guinea pig, blind mole-rat, and naked mole-rat, as well as humans. As predicted, the mutagen-induced mutation frequencies inversely correlated with species-specific maximum life span, with the greatest difference observed between the mouse and all other species. These results suggest that long-lived species are capable of processing DNA damage in a more accurate way than short-lived species.

10.
Nat Immunol ; 22(10): 1219-1230, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556881

RESUMO

Blind mole rats (BMRs) are small rodents, characterized by an exceptionally long lifespan (>21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). Cells and tissues of BMRs express very low levels of DNA methyltransferase 1. Following cell hyperplasia, the BMR genome DNA loses methylation, resulting in the activation of RTEs. Upregulated RTEs form cytoplasmic RNA-DNA hybrids, which activate the cGAS-STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and humans. We propose that RTEs were co-opted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of the innate immune response. Activation of RTEs is a double-edged sword, serving as a tumor suppressor but contributing to aging in late life via the induction of sterile inflammation.


Assuntos
Elementos de DNA Transponíveis/imunologia , Imunidade Inata/imunologia , Ratos-Toupeira/imunologia , Neoplasias/imunologia , Animais , Carcinogênese/imunologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células Cultivadas , DNA/imunologia , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Ratos , Transdução de Sinais/imunologia
11.
Nat Commun ; 11(1): 2376, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398747

RESUMO

Naked mole-rat (NMR), the longest-living rodent, produces very-high-molecular-mass hyaluronan (vHMM-HA), compared to other mammalian species. However, it is unclear if exceptional polymer length of vHMM-HA is important for longevity. Here, we show that vHMM-HA (>6.1 MDa) has superior cytoprotective properties compared to the shorter HMM-HA. It protects not only NMR cells, but also mouse and human cells from stress-induced cell-cycle arrest and cell death in a polymer length-dependent manner. The cytoprotective effect is dependent on the major HA-receptor, CD44. We find that vHMM-HA suppresses CD44 protein-protein interactions, whereas HMM-HA promotes them. As a result, vHMM-HA and HMM-HA induce opposing effects on the expression of CD44-dependent genes, which are associated with the p53 pathway. Concomitantly, vHMM-HA partially attenuates p53 and protects cells from stress in a p53-dependent manner. Our results implicate vHMM-HA in anti-aging mechanisms and suggest the potential applications of vHMM-HA for enhancing cellular stress resistance.


Assuntos
Citoproteção/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular , Citoproteção/fisiologia , Regulação da Expressão Gênica/fisiologia , Técnicas de Inativação de Genes , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/isolamento & purificação , Ácido Hialurônico/metabolismo , Longevidade/fisiologia , Camundongos , Ratos-Toupeira/fisiologia , Peso Molecular , Cultura Primária de Células , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Especificidade da Espécie , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Cell Metab ; 29(4): 871-885.e5, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30853213

RESUMO

Mice deficient for SIRT6 exhibit a severely shortened lifespan, growth retardation, and highly elevated LINE1 (L1) activity. Here we report that SIRT6-deficient cells and tissues accumulate abundant cytoplasmic L1 cDNA, which triggers strong type I interferon response via activation of cGAS. Remarkably, nucleoside reverse-transcriptase inhibitors (NRTIs), which inhibit L1 retrotransposition, significantly improved health and lifespan of SIRT6 knockout mice and completely rescued type I interferon response. In tissue culture, inhibition of L1 with siRNA or NRTIs abrogated type I interferon response, in addition to a significant reduction of DNA damage markers. These results indicate that L1 activation contributes to the pathologies of SIRT6 knockout mice. Similarly, L1 transcription, cytoplasmic cDNA copy number, and type I interferons were elevated in the wild-type aged mice. As sterile inflammation is a hallmark of aging, we propose that modulating L1 activity may be an important strategy for attenuating age-related pathologies.


Assuntos
Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sirtuínas/metabolismo , Fatores Etários , Animais , Didesoxinucleotídeos/administração & dosagem , Didesoxinucleotídeos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas de Ligação a RNA/antagonistas & inibidores , Sirtuínas/deficiência , Estavudina/administração & dosagem , Estavudina/farmacologia , Nucleotídeos de Timina/administração & dosagem , Nucleotídeos de Timina/farmacologia , Zidovudina/administração & dosagem , Zidovudina/análogos & derivados , Zidovudina/farmacologia
13.
Stem Cell Reports ; 9(5): 1721-1734, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29107597

RESUMO

Naked mole rat (NMR) is a valuable model for aging and cancer research due to its exceptional longevity and cancer resistance. We observed that the reprogramming efficiency of NMR fibroblasts in response to OSKM was drastically lower than that of mouse fibroblasts. Expression of SV40 LargeT antigen (LT) dramatically improved reprogramming of NMR fibroblasts. Inactivation of Rb alone, but not p53, was sufficient to improve reprogramming efficiency, suggesting that NMR chromatin may be refractory to reprogramming. Analysis of the global histone landscape revealed that NMR had higher levels of repressive H3K27 methylation marks and lower levels of activating H3K27 acetylation marks than mouse. ATAC-seq revealed that in NMR, promoters of reprogramming genes were more closed than mouse promoters, while expression of LT led to massive opening of the NMR promoters. These results suggest that NMR displays a more stable epigenome that resists de-differentiation, contributing to the cancer resistance and longevity of this species.


Assuntos
Animais Geneticamente Modificados/genética , Reprogramação Celular , Quimera/genética , Epigênese Genética , Código das Histonas , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Quimera/embriologia , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Genoma , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Ratos-Toupeira
14.
Aging (Albany NY) ; 8(5): 841-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27163160

RESUMO

Differences in the way human and mouse fibroblasts experience senescence in culture had long puzzled researchers. While senescence of human cells is mediated by telomere shortening, Parrinello et al. demonstrated that senescence of mouse cells is caused by extreme oxygen sensitivity. It was hypothesized that the striking difference in oxygen sensitivity between mouse and human cells explains their different rates of aging. To test if this hypothesis is broadly applicable, we cultured cells from 16 rodent species with diverse lifespans in 3% and 21% oxygen and compared their growth rates. Unexpectedly, fibroblasts derived from laboratory mouse strains were the only cells demonstrating extreme sensitivity to oxygen. Cells from hamster, muskrat, woodchuck, capybara, blind mole rat, paca, squirrel, beaver, naked mole rat and wild-caught mice were mildly sensitive to oxygen, while cells from rat, gerbil, deer mouse, chipmunk, guinea pig and chinchilla showed no difference in the growth rate between 3% and 21% oxygen. We conclude that, although the growth of primary fibroblasts is generally improved by maintaining cells in 3% oxygen, the extreme oxygen sensitivity is a peculiarity of laboratory mouse strains, possibly related to their very long telomeres, and fibroblast oxygen sensitivity does not directly correlate with species' lifespan.


Assuntos
Senescência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Longevidade/fisiologia , Oxigênio/administração & dosagem , Telômero/fisiologia , Animais , Células Cultivadas , Senescência Celular/fisiologia , Fibroblastos/citologia , Estresse Oxidativo , Especificidade da Espécie
15.
Nature ; 499(7458): 346-9, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23783513

RESUMO

The naked mole rat (Heterocephalus glaber) displays exceptional longevity, with a maximum lifespan exceeding 30 years. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years. In addition to their longevity, naked mole rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer. Here we identify a mechanism responsible for the naked mole rat's cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high-molecular-mass hyaluronan (HA), which is over five times larger than human or mouse HA. This high-molecular-mass HA accumulates abundantly in naked mole-rat tissues owing to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signalling, as they have a higher affinity to HA compared with mouse or human cells. Perturbation of the signalling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high-molecular-mass HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, HYAL2, naked mole-rat cells become susceptible to malignant transformation and readily form tumours in mice. We speculate that naked mole rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.


Assuntos
Transformação Celular Neoplásica/metabolismo , Ácido Hialurônico/metabolismo , Sequência de Aminoácidos , Animais , Proliferação de Células , Células Cultivadas , Inibição de Contato , Resistência à Doença , Fibroblastos/metabolismo , Glucuronosiltransferase/química , Cobaias , Humanos , Hialuronan Sintases , Camundongos , Ratos-Toupeira , Dados de Sequência Molecular
16.
Proc Natl Acad Sci U S A ; 109(47): 19392-6, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129611

RESUMO

Blind mole rats Spalax (BMR) are small subterranean rodents common in the Middle East. BMR is distinguished by its adaptations to life underground, remarkable longevity (with a maximum documented lifespan of 21 y), and resistance to cancer. Spontaneous tumors have never been observed in spalacids. To understand the mechanisms responsible for this resistance, we examined the growth of BMR fibroblasts in vitro of the species Spalax judaei and Spalax golani. BMR cells proliferated actively for 7-20 population doublings, after which the cells began secreting IFN-ß, and the cultures underwent massive necrotic cell death within 3 d. The necrotic cell death phenomenon was independent of culture conditions or telomere shortening. Interestingly, this cell behavior was distinct from that observed in another long-lived and cancer-resistant African mole rat, Heterocephalus glaber, the naked mole rat in which cells display hypersensitivity to contact inhibition. Sequestration of p53 and Rb proteins using SV40 large T antigen completely rescued necrotic cell death. Our results suggest that cancer resistance of BMR is conferred by massive necrotic response to overproliferation mediated by p53 and Rb pathways, and triggered by the release of IFN-ß. Thus, we have identified a unique mechanism that contributes to cancer resistance of this subterranean mammal extremely adapted to life underground.


Assuntos
Resistência à Doença/imunologia , Fibroblastos/patologia , Necrose/patologia , Neoplasias/patologia , Spalax/imunologia , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Inibição de Contato , Fibroblastos/metabolismo , Humanos , Interferon beta/metabolismo , Masculino , Camundongos , Fenótipo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Encurtamento do Telômero , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...