Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37237488

RESUMO

Impaired adipocyte function contributes to systemic metabolic dysregulation, and altered fat mass or function increases the risk of Type 2 diabetes. EHMTs 1 and 2 (euchromatic histone lysine methyltransferases 1 and 2), also known as the G9a-like protein (GLP) and G9a, respectively, catalyze the mono- and di-methylation of histone 3 lysine 9 (H3K9) and also methylate nonhistone substrates; in addition, they can act as transcriptional coactivators independent of their methyltransferase activity. These enzymes are known to contribute to adipocyte development and function, and in vivo data indicate a role for G9a and GLP in metabolic disease states; however, the mechanisms involved in the cell-autonomous functions of G9a and GLP in adipocytes are largely unknown. Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine typically induced in adipose tissue in conditions of insulin resistance and Type 2 diabetes. Using an siRNA approach, we have determined that the loss of G9a and GLP enhances TNFα-induced lipolysis and inflammatory gene expression in adipocytes. Furthermore, we show that G9a and GLP are present in a protein complex with nuclear factor kappa B (NF-κB) in TNFα-treated adipocytes. These novel observations provide mechanistic insights into the association between adipocyte G9a and GLP expression and systemic metabolic health.

2.
J Mol Endocrinol ; 61(4): 195-205, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30139876

RESUMO

STAT5A (signal transducer and activator of transcription 5A) is a transcription factor that plays a role in adipocyte development and function. In this study, we report DBC1 (deleted in breast cancer 1; also known as CCAR2) as a novel STAT5A-interacting protein. DBC1 has been primarily studied in tumor cells, but there is evidence that loss of this protein may promote metabolic health in mice. Currently, the functions of DBC1 in mature adipocytes are largely unknown. Using immunoprecipitation and immunoblotting techniques, we confirmed that there is an association between endogenous STAT5A and DBC1 proteins under physiological conditions in the adipocyte nucleus that is not dependent upon STAT5A tyrosine phosphorylation. We used siRNA to knockdown DBC1 in 3T3-L1 adipocytes to determine the impact on STAT5A activity, adipocyte gene expression, and TNFα (tumor necrosis factor α)-regulated lipolysis. The loss of DBC1 did not affect the expression of several STAT5A target genes including Socs3, Cish, Bcl6, Socs2, and Igf1 However, we did observe decreased levels of TNFα-induced glycerol and free fatty acids released from adipocytes with reduced DBC1 expression. In addition, DBC1-knockdown adipocytes had increased Glut4 expression. In summary, DBC1 can associate with STAT5A in adipocyte nucleus, but it does not appear to impact regulation of STAT5A target genes. Loss of adipocyte DBC1 modestly increases Glut4 gene expression and reduces TNFα-induced lipolysis. These observations are consistent with in vivo observations that show loss of DBC1 promotes metabolic health in mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Lipólise/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoprecipitação , Camundongos , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno , Fator de Transcrição STAT5/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
3.
Biology (Basel) ; 6(1)2017 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-28287479

RESUMO

Signal Transducers and Activators of Transcription (STATs) are key components of the JAK/STAT pathway. Of the seven STATs, STAT5A and STAT5B are of particular interest for their critical roles in cellular differentiation, adipogenesis, oncogenesis, and immune function. The interactions of STAT5A and STAT5B with cytokine/hormone receptors, nuclear receptors, transcriptional regulators, proto-oncogenes, kinases, and phosphatases all contribute to modulating STAT5 activity. Among these STAT5 interacting proteins, some serve as coactivators or corepressors to regulate STAT5 transcriptional activity and some proteins can interact with STAT5 to enhance or repress STAT5 signaling. In addition, a few STAT5 interacting proteins have been identified as positive regulators of STAT5 that alter serine and tyrosine phosphorylation of STAT5 while other proteins have been identified as negative regulators of STAT5 via dephosphorylation. This review article will discuss how STAT5 activity is modulated by proteins that physically interact with STAT5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA