Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(4): 1191-1208, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35050395

RESUMO

KEY MESSAGE: Assessing adaptation to abiotic stresses such as high temperature conditions across multiple environments presents opportunities for breeders to target selection for broad adaptation and specific adaptation. Adaptation of wheat to heat stress is an important component of adaptation in variable climates such as the cereal producing areas of Australia. However, in variable climates stress conditions may not be present in every season or are present to varying degrees, at different times during the season. Such conditions complicate plant breeders' ability to select for adaptation to abiotic stress. This study presents a framework for the assessment of the genetic basis of adaptation to heat stress conditions with improved relevance to breeders' selection objectives. The framework was applied here with the evaluation of 1225 doubled haploid lines from five populations across six environments (three environments selected for contrasting temperature stress conditions during anthesis and grain fill periods, over two consecutive seasons), using regionally best practice planting times to evaluate the role of heat stress conditions in genotype adaptation. Temperature co-variates were determined for each genotype, in each environment, for the anthesis and grain fill periods. Genome-wide QTL analysis identified performance QTL for stable effects across all environments, and QTL that illustrated responsiveness to heat stress conditions across the sampled environments. A total of 199 QTL were identified, including 60 performance QTL, and 139 responsiveness QTL. Of the identified QTL, 99 occurred independent of the 21 anthesis date QTL identified. Assessing adaptation to heat stress conditions as the combination of performance and responsiveness offers breeders opportunities to select for grain yield stability across a range of environments, as well as genotypes with higher relative yield in stress conditions.


Assuntos
Locos de Características Quantitativas , Triticum , Adaptação Fisiológica/genética , Grão Comestível/genética , Genótipo , Resposta ao Choque Térmico , Fenótipo , Triticum/genética
2.
Trends Plant Sci ; 27(7): 699-716, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34906381

RESUMO

The agricultural sector must produce resilient and climate-smart crops to meet the increasing needs of global food production. Recent advancements in elucidating the mechanistic basis of plant stress memory have provided new opportunities for crop improvement. Stress memory-coordinated changes at the organismal, cellular, and various omics levels prepare plants to be more responsive to reoccurring stress within or across generation(s). The exposure to a primary stress, or stress priming, can also elicit a beneficial impact when encountering a secondary abiotic or biotic stress through the convergence of synergistic signalling pathways, referred to as cross-stress tolerance. 'Rewired plants' with stress memory provide a new means to stimulate adaptable stress responses, safeguard crop reproduction, and engineer climate-smart crops for the future.


Assuntos
Produtos Agrícolas , Estresse Fisiológico , Produtos Agrícolas/genética
3.
Front Plant Sci ; 12: 722637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490019

RESUMO

Low temperatures during the flowering period of cereals can lead to floret sterility, yield reduction, and economic losses in Australian crops. In order to breed for improved frost susceptibility, selection methods are urgently required to identify novel sources of frost tolerant germplasm. However, the presence of genotype by environment interactions (i.e. variety responses to a change in environment) is a major constraint to select the most appropriate varieties in any given target environment. An advanced method of analysis for multi-environment trials that includes factor analytic selection tools to summarize overall performance and stability to a specific trait across the environments could deliver useful information to guide growers and plant breeding programs in providing the most appropriate decision making-strategy. In this study, the updated selection tools approached in this multi-environment trials (MET) analysis have allowed variety comparisons with similar frost susceptibility but which have a different response to changes in the environment or vice versa. This MET analysis included a wide range of sowing dates grown at multiple locations from 2010 to 2019, respectively. These results, as far as we are aware, show for the first-time genotypic differences to frost damage through a MET analysis by phenotyping a vast number of accurate empirical measurements that reached in excess of 557,000 spikes. This has resulted in a substantial number of experimental units (10,317 and 5,563 in wheat and barley, respectively) across a wide range of sowing times grown at multiple locations from 2010 to 2019. Varieties with low frost overall performance (OP) and low frost stability (root mean square deviation -RMSD) were less frost susceptible, with performance more consistent across all environments, while varieties with low OP and high RMSD were adapted to specific environmental conditions.

4.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073862

RESUMO

Heat stress is a major limiting factor of grain yield and quality in crops. Abiotic stresses have a transgenerational impact and the mechanistic basis is associated with epigenetic regulation. The current study presents the first systematic analysis of the transgenerational effects of post-anthesis heat stress in tetraploid wheat. Leaf physiological traits, harvest components and grain quality traits were characterized under the impact of parental and progeny heat stress. The parental heat stress treatment had a positive influence on the offspring for traits including chlorophyll content, grain weight, grain number and grain total starch content. Integrated sequencing analysis of the small RNAome, mRNA transcriptome and degradome provided the first description of the molecular networks mediating heat stress adaptation under transgenerational influence. The expression profile of 1771 microRNAs (733 being novel) and 66,559 genes was provided, with differentially expressed microRNAs and genes characterized subject to the progeny treatment, parental treatment and tissue-type factors. Gene Ontology and KEGG pathway analysis of stress responsive microRNAs-mRNA modules provided further information on their functional roles in biological processes such as hormone homeostasis, signal transduction and protein stabilization. Our results provide new insights on the molecular basis of transgenerational heat stress adaptation, which can be used for improving thermo-tolerance in breeding.


Assuntos
Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas/genética , Resposta ao Choque Térmico/genética , MicroRNAs/metabolismo , Transcriptoma/genética , Clorofila/análise , Regulação para Baixo , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Folhas de Planta/metabolismo , Estabilidade de RNA/genética , Sementes/metabolismo , Amido/análise , Tetraploidia , Triticum/genética , Regulação para Cima
5.
Plants (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919185

RESUMO

Stress events have transgenerational effects on plant growth and development. In Mediterranean regions, water-deficit and heat (WH) stress is a frequent issue that negatively affects crop yield and quality. Nitrogen (N) is an essential plant macronutrient and often a yield-limiting factor for crops. Here, the response of durum wheat seedlings to N starvation under the transgenerational effects of WH stress was investigated in two genotypes. Both genotypes showed a significant reduction in seedling height, leaf number, shoot and root weight (fresh and dry), primary root length, and chlorophyll content under N starvation stress. However, in the WH stress-tolerant genotype, the percentage reduction of most traits was lower in progeny from the stressed parents than progeny from the control parents. Small RNA sequencing identified 1534 microRNAs in different treatment groups. Differentially expressed microRNAs (DEMs) were characterized subject to N starvation, parental stress and genotype factors, with their target genes identified in silico. GO and KEGG enrichment analyses revealed the biological functions, associated with DEM-target modules in stress adaptation processes, that could contribute to the phenotypic differences observed between the two genotypes. The study provides the first evidence of the transgenerational effects of WH stress on the N starvation response in durum wheat.

6.
Theor Appl Genet ; 134(5): 1387-1407, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33675373

RESUMO

KEY MESSAGE: Adaptation to abiotic stresses such as high-temperature conditions should be considered as its independent components of total performance and responsiveness. Understanding and identifying improved adaptation to abiotic stresses such as heat stress has been the focus of a number of studies in recent decades. However, confusing and potentially misleading terminology has made progress difficult and hard to apply within breeding programs selecting for improved adaption to heat stress conditions. This study proposes that adaption to heat stress (and other abiotic stresses) be considered as the combination of total performance and responsiveness to heat stress. In this study, 1413 doubled haploid lines from seven populations were screened through a controlled environment assay, subjecting plants to three consecutive eight hour days of an air temperature of 36 °C and a wind speed of 40 km h-1, 10 days after the end of anthesis. QTL mapping identified a total of 96 QTL for grain yield determining traits and anthesis date with nine correlating to responsiveness, 72 for total performance and 15 for anthesis date. Responsiveness QTL were found both collocated with other performance QTL as well as independently. A sound understanding of genomic regions associated with total performance and responsiveness will be important for breeders. Genomic regions of total performance, those that show higher performance that is stable under both stressed and non-stressed conditions, potentially offer significant opportunities to breeders. We propose this as a definition and selection target that has not previously been defined for heat stress adaptation.


Assuntos
Adaptação Fisiológica , Cromossomos de Plantas/genética , Genoma de Planta , Resposta ao Choque Térmico , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico/métodos , Epistasia Genética , Ligação Genética , Genética Populacional , Fenótipo , Melhoramento Vegetal , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
7.
Sci Rep ; 11(1): 3613, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574419

RESUMO

Water-deficit stress negatively affects wheat yield and quality. Abiotic stress on parental plants during reproduction may have transgenerational effects on progeny. Here we investigated the transgenerational influence of pre-anthesis water-deficit stress by detailed analysis of the yield components, grain quality traits, and physiological traits in durum wheat. Next-generation sequencing analysis profiled the small RNA-omics, mRNA transcriptomics, and mRNA degradomics in first generation progeny. Parental water-deficit stress had positive impacts on the progeny for traits including harvest index and protein content in the less stress-tolerant variety. Small RNA-seq identified 1739 conserved and 774 novel microRNAs (miRNAs). Transcriptome-seq characterised the expression of 66,559 genes while degradome-seq profiled the miRNA-guided mRNA cleavage dynamics. Differentially expressed miRNAs and genes were identified, with significant regulatory patterns subject to trans- and inter-generational stress. Integrated analysis using three omics platforms revealed significant biological interactions between stress-responsive miRNA and targets, with transgenerational stress tolerance potentially contributed via pathways such as hormone signalling and nutrient metabolism. Our study provides the first confirmation of the transgenerational effects of water-deficit stress in durum wheat. New insights gained at the molecular level indicate that key miRNA-mRNA modules are candidates for transgenerational stress improvement.


Assuntos
Pequeno RNA não Traduzido/genética , Estresse Fisiológico/fisiologia , Transcriptoma/genética , Triticum/genética , Desidratação/genética , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Proteínas de Plantas/genética , RNA Mensageiro , Triticum/fisiologia
8.
Front Plant Sci ; 12: 694424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046965

RESUMO

Matching flowering time to the optimal flowering period in Mediterranean cropping zones is pivotal to maximize yield. Aside from variety selection and sowing date, growers have limited options to alter development in season. Plant hormones and growth regulators are used in perennial horticultural systems to manipulate development and floral initiation. In this study, a range of plant hormonal products were tested to analyze their effects on barley (Hordeum vulgare L) development by exogenous spray applications. Plants were grown in controlled conditions under long and short photoperiods with different vernalization treatments. The gibberellin (GA) products demonstrated the greatest potential for altering development. The GA inhibitor trinexapac-ethyl was able to delay the time to flowering in genetically divergent barley cultivars by up to 200 degree days under controlled conditions. A similar delay in flowering could be achieved via application at both early (GS13) and late (GS33) stages, with higher rates delaying flowering further. Notably, trinexapac-ethyl was able to extend the duration of pre-anthesis phases of development. By contrast, GA3 was unable to accelerate development under extreme short (8 h) or long (16 h) day lengths. There was also little evidence that GA3 could reproducibly accelerate development under intermediate 10-12 h day lengths. In addition, sprays of the cytokinin 6-benzyladenine (6-BA) were unable to reduce the vernalization requirement of the winter genotype Urambie. The present study provides baseline data for plant growth regulator treatments that delay cereal development. These treatments might be extended in field studies to align flowering of early sown crops to the optimal flowering period.

9.
Opt Express ; 28(21): 30644-30655, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115061

RESUMO

Frost is estimated to cost Australian grain growers $ 360 million in direct and indirect losses every year. Assessing frost damage manually in barley is labor intensive and involves destructive sampling. To mitigate against significant economic loss, it is crucial that assessment decisions on whether to cut for hay or continue to harvest are made soon after frost damage has occurred. In this paper, we propose a non-destructive technique by using raster-scan terahertz imaging. Terahertz waves can penetrate the spike to determine differences between frosted and unfrosted grains. With terahertz raster-scan imaging, conducted in both transmission and reflection at 275 GHz, frosted and unfrosted barley spikes show significant differences. In addition, terahertz imaging allows to determine individual grain positions. The emergence of compact terahertz sources and cameras would enable field deployment of terahertz non-destructive inspection for early frost damage.

10.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096606

RESUMO

Crop reproduction is highly sensitive to water deficit and heat stress. The molecular networks of stress adaptation and grain development in tetraploid wheat (Triticum turgidum durum) are not well understood. Small RNAs (sRNAs) are important epigenetic regulators connecting the transcriptional and post-transcriptional regulatory networks. This study presents the first multi-omics analysis of the sRNAome, transcriptome, and degradome in T. turgidum developing grains, under single and combined water deficit and heat stress. We identified 690 microRNAs (miRNAs), with 84 being novel, from 118 sRNA libraries. Complete profiles of differentially expressed miRNAs (DEMs) specific to genotypes, stress types, and different reproductive time-points are provided. The first degradome sequencing report for developing durum grains discovered a significant number of new target genes regulated by miRNAs post-transcriptionally. Transcriptome sequencing profiled 53,146 T. turgidum genes, swith differentially expressed genes (DEGs) enriched in functional categories such as nutrient metabolism, cellular differentiation, transport, reproductive development, and hormone transduction pathways. miRNA-mRNA networks that affect grain characteristics such as starch synthesis and protein metabolism were constructed on the basis of integrated analysis of the three omics. This study provides a substantial amount of novel information on the post-transcriptional networks in T. turgidum grains, which will facilitate innovations for breeding programs aiming to improve crop resilience and grain quality.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Proteínas de Plantas/genética , RNA de Plantas , Estresse Fisiológico/genética , Triticum/fisiologia , Processamento Alternativo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Triticum/genética
11.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825615

RESUMO

Water-deficit and heat stress negatively impact crop production. Mechanisms underlying the response of durum wheat to such stresses are not well understood. With the new durum wheat genome assembly, we conducted the first multi-omics analysis with next-generation sequencing, providing a comprehensive description of the durum wheat small RNAome (sRNAome), mRNA transcriptome, and degradome. Single and combined water-deficit and heat stress were applied to stress-tolerant and -sensitive Australian genotypes to study their response at multiple time-points during reproduction. Analysis of 120 sRNA libraries identified 523 microRNAs (miRNAs), of which 55 were novel. Differentially expressed miRNAs (DEMs) were identified that had significantly altered expression subject to stress type, genotype, and time-point. Transcriptome sequencing identified 49,436 genes, with differentially expressed genes (DEGs) linked to processes associated with hormone homeostasis, photosynthesis, and signaling. With the first durum wheat degradome report, over 100,000 transcript target sites were characterized, and new miRNA-mRNA regulatory pairs were discovered. Integrated omics analysis identified key miRNA-mRNA modules (particularly, novel pairs of miRNAs and transcription factors) with antagonistic regulatory patterns subject to different stresses. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed significant roles in plant growth and stress adaptation. Our research provides novel and fundamental knowledge, at the whole-genome level, for transcriptional and post-transcriptional stress regulation in durum wheat.


Assuntos
Desidratação/genética , Resposta ao Choque Térmico/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Triticum/genética , Processamento Alternativo , Produtos Agrícolas , Secas , Regulação da Expressão Gênica de Plantas , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Análise de Sequência de RNA , Fatores de Tempo , Triticum/fisiologia
12.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722187

RESUMO

Durum wheat (Triticum turgidum L. ssp. durum) production can experience significant yield losses due to crown rot (CR) disease. Losses are usually exacerbated when disease infection coincides with terminal drought. Durum wheat is very susceptible to CR, and resistant germplasm is not currently available in elite breeding pools. We hypothesize that deploying physiological traits for drought adaptation, such as optimal root system architecture to reduce water stress, might minimize losses due to CR infection. This study evaluated a subset of lines from a nested association mapping population for stay-green traits, CR incidence and yield in field experiments as well as root traits under controlled conditions. Weekly measurements of normalized difference vegetative index (NDVI) in the field were used to model canopy senescence and to determine stay-green traits for each genotype. Genome-wide association studies using DArTseq molecular markers identified quantitative trait loci (QTLs) on chromosome 6B (qCR-6B) associated with CR tolerance and stay-green. We explored the value of qCR-6B and a major QTL for root angle QTL qSRA-6A using yield datasets from six rainfed environments, including two environments with high CR disease pressure. In the absence of CR, the favorable allele for qSRA-6A provided an average yield advantage of 0.57 t·ha-1, whereas in the presence of CR, the combination of favorable alleles for both qSRA-6A and qCR-6B resulted in a yield advantage of 0.90 t·ha-1. Results of this study highlight the value of combining above- and belowground physiological traits to enhance yield potential. We anticipate that these insights will assist breeders to design improved durum varieties that mitigate production losses due to water deficit and CR.


Assuntos
Cromossomos de Plantas , Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Cruzamentos Genéticos , Desidratação/genética , Desidratação/metabolismo , Estudo de Associação Genômica Ampla , Triticum/genética , Triticum/crescimento & desenvolvimento
13.
Plants (Basel) ; 9(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033017

RESUMO

Water deficiency and heat stress can severely limit crop production and quality. Stress imposed on the parents during reproduction could have transgenerational effects on their progeny. Seeds with different origins can vary significantly in their germination and early growth. Here, we investigated how water-deficit and heat stress on parental durum wheat plants affected seedling establishment of the subsequent generation. One stress-tolerant and one stress-sensitive Australian durum genotype were used. Seeds were collected from parents with or without exposure to stress during reproduction. Generally, stress on the previous generation negatively affected seed germination and seedling vigour, but to a lesser extent in the tolerant variety. Small RNA sequencing utilising the new durum genome assembly revealed significant differences in microRNA (miRNA) expression in the two genotypes. A bioinformatics approach was used to identify multiple miRNA targets which have critical molecular functions in stress adaptation and plant development and could therefore contribute to the phenotypic differences observed. Our data provide the first confirmation of the transgenerational effects of reproductive-stage stress on germination and seedling establishment in durum wheat. New insights gained on the epigenetic level indicate that durum miRNAs could be key factors in optimising seed vigour for breeding superior germplasm and/or varieties.

14.
Front Plant Sci ; 11: 569905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408724

RESUMO

Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program.

15.
Sci Rep ; 9(1): 14986, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628402

RESUMO

In Mediterranean environments, water deficiency and heat during reproduction severely limit cereal crop production. Our research investigated the effects of single and combined pre-anthesis water-deficit stress and post-anthesis heat stress in ten Australian durum genotypes, providing a systematic evaluation of stress response at the molecular, physiological, grain quality and yield level. We studied leaf physiological traits at different reproductive stages, evaluated the grain yield and quality, and the associations among them. We profiled the expression dynamics of two durum microRNAs and their protein-coding targets (auxin response factors and heat shock proteins) involved in stress adaptation. Chlorophyll content, stomatal conductance and leaf relative water content were mostly reduced under stress, however, subject to the time-point and genotype. The influence of stress on grain traits (e.g., protein content) also varied considerably among the genotypes. Significant positive correlations between the physiological traits and the yield components could be used to develop screening strategies for stress improvement in breeding. Different expression patterns of stress-responsive microRNAs and their targets in the most stress-tolerant and most stress-sensitive genotype provided some insight into the complex defense molecular networks in durum. Overall, genotypic performance observed indicates that different stress-coping strategies are deployed by varieties under various stresses.


Assuntos
Grão Comestível/genética , Genótipo , Resposta ao Choque Térmico , Reprodução/genética , Triticum/genética , Água , Adaptação Fisiológica/genética , Clorofila/química , Produção Agrícola , Proteínas de Choque Térmico/genética , MicroRNAs/genética , Melhoramento Vegetal , Folhas de Planta/química , Fatores de Transcrição/genética
16.
Front Plant Sci ; 10: 436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024600

RESUMO

The optimal root system architecture (RSA) of a crop is context dependent and critical for efficient resource capture in the soil. Narrow root growth angle promoting deeper root growth is often associated with improved access to water and nutrients in deep soils during terminal drought. RSA, therefore is a drought-adaptive trait that could minimize yield losses in regions with limited rainfall. Here, GWAS for seminal root angle (SRA) identified seven marker-trait associations clustered on chromosome 6A, representing a major quantitative trait locus (qSRA-6A) which also displayed high levels of pairwise LD (r 2 = 0.67). Subsequent haplotype analysis revealed significant differences between major groups. Candidate gene analysis revealed loci related to gravitropism, polar growth and hormonal signaling. No differences were observed for root biomass between lines carrying hap1 and hap2 for qSRA-6A, highlighting the opportunity to perform marker-assisted selection for the qSRA-6A locus and directly select for wide or narrow RSA, without influencing root biomass. Our study revealed that the genetic predisposition for deep rooting was best expressed under water-limitation, yet the root system displayed plasticity producing root growth in response to water availability in upper soil layers. We discuss the potential to deploy root architectural traits in cultivars to enhance yield stability in environments that experience limited rainfall.

17.
Plant Methods ; 14: 36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785201

RESUMO

BACKGROUND: Plant breeding requires numerous generations to be cycled and evaluated before an improved cultivar is released. This lengthy process is required to introduce and test multiple traits of interest. However, a technology for rapid generation advance named 'speed breeding' was successfully deployed in bread wheat (Triticum aestivum L.) to achieve six generations per year while imposing phenotypic selection for foliar disease resistance and grain dormancy. Here, for the first time the deployment of this methodology is presented in durum wheat (Triticum durum Desf.) by integrating selection for key traits, including above and below ground traits on the same set of plants. This involved phenotyping for seminal root angle (RA), seminal root number (RN), tolerance to crown rot (CR), resistance to leaf rust (LR) and plant height (PH). In durum wheat, these traits are desirable in environments where yield is limited by in-season rainfall with the occurrence of CR and epidemics of LR. To evaluate this multi-trait screening approach, we applied selection to a large segregating F2 population (n = 1000) derived from a bi-parental cross (Outrob4/Caparoi). A weighted selection index (SI) was developed and applied. The gain for each trait was determined by evaluating F3 progeny derived from 100 'selected' and 100 'unselected' F2 individuals. RESULTS: Transgressive segregation was observed for all assayed traits in the Outrob4/Caparoi F2 population. Application of the SI successfully shifted the population mean for four traits, as determined by a significant mean difference between 'selected' and 'unselected' F3 families for CR tolerance, LR resistance, RA and RN. No significant shift for PH was observed. CONCLUSIONS: The novel multi-trait phenotyping method presents a useful tool for rapid selection of early filial generations or for the characterization of fixed lines out-of-season. Further, it offers efficient use of resources by assaying multiple traits on the same set of plants. Results suggest that when performed in parallel with speed breeding in early generations, selection will enrich recombinant inbred lines with desirable alleles and will reduce the length and number of years required to combine these traits in elite breeding populations and therefore cultivars.

18.
Front Plant Sci ; 8: 1008, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676806

RESUMO

Drought stress induced pollen sterility is a detrimental factor reducing grain number in wheat. Exploring the mechanisms underlying pollen fertility under drought conditions could assist breeding high-yielding wheat cultivars with stress tolerance. Here, by using two Chinese wheat cultivars subjected to different levels of polyethylene glycol (PEG)-induced drought stress, possible links between pollen fertility and stress tolerance were analyzed under different levels of drought stress at the young microspore stage. In both cultivars, higher grain number reduction was observed under condition of lower water availability. Overall, the drought tolerant cultivar (Jinmai47) exhibited less grain number reduction than the drought sensitive cultivar (Shiluan02-1) under all stress conditions. Compared with Shiluan02-1, Jinmai47 exhibited superior physiological performance in terms of leaf photosynthetic rate, ear carbohydrate accumulation, pollen sink strength, pollen development and fertility under stress. Moreover, Jinmai47 showed a lower increase in endogenous abscisic acid in ears than Shiluan02-1. Furthermore, higher levels of superoxide dismutase (SOD) and peroxidase (POD) activities were also found in the drought tolerant cultivar Jinmai47 under PEG stress, compared with the drought sensitive cultivar Shiluan02-1. Changes in these physiological traits could contribute to better pollen development and male fertility, ultimately leading to the maintenance of grain number under drought stress.

19.
Funct Plant Biol ; 44(5): 538-551, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32480586

RESUMO

In Mediterranean environments, water-deficit stress that occurs before anthesis significantly limits durum wheat (Triticum turgidum L. ssp. durum) production. Stress tolerant and stress sensitive durum varieties exhibit genotypic differences in their response to pre-anthesis water-deficit stress as reflected by yield performance, but our knowledge of the mechanisms underlying tolerance is limited. We have previously identified stress responsive durum microRNAs (miRNAs) that could contribute to water-deficit stress tolerance by mediating post-transcriptional silencing of genes that lead to stress adaptation (e.g. miR160 and its targets ARF8 (auxin response factor 8) and ARF18). However, the temporal regulation pattern of miR160-ARFs after induction of pre-anthesis water-deficit stress in sensitive and tolerant varieties remains unknown. Here, the physiological responses of four durum genotypes are described by chlorophyll content, leaf relative water content, and stomatal conductance at seven time-points during water-deficit stress from booting to anthesis. qPCR examination of miR160, ARF8 and ARF18 at these time-points revealed a complex stress responsive regulatory pattern, in the flag leaf and the head, subject to genotype. Harvest components and morphological traits measured at maturity confirmed the stress tolerance level of these four varieties for agronomic performance, and their potential association with the physiological responses. In general, the distinct regulatory pattern of miR160-ARFs among stress tolerant and sensitive durum varieties suggests that miRNA-mediated molecular pathways may contribute to the genotypic differences in the physiological traits, ultimately affecting yield components (e.g. the maintenance of harvest index and grain number).

20.
Plant J ; 90(5): 898-917, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27987327

RESUMO

Plant breeding and improvements in agronomic practice are making a consistent contribution to increasing global crop production year upon year. However, the rate of yield improvement currently lags behind the targets set to produce enough food to meet the demands of the predicted global population in 2050. Furthermore, crops that are exposed to harmful abiotic environmental factors (abiotic stresses, e.g. water limitation, salinity, extreme temperature) are prone to reduced yields. Here, we briefly describe the processes undertaken in conventional breeding programmes, which are usually designed to improve yields in near-optimal conditions rather than specifically breeding for improved crop yield stability under stressed conditions. While there is extensive fundamental research activity that examines mechanisms of plant stress tolerance, there are few examples that apply this research to improving commercial crop yields. There are notable exceptions, and we highlight some of these to demonstrate the magnitude of yield gains that could be made by translating agronomic, phenological and genetic solutions focused on improving or mitigating the effect of abiotic stress in the field; in particular, we focus on improvements in crop water-use efficiency and salinity tolerance. We speculate upon the reasons for the disconnect between research and research translation. We conclude that to realise untapped rapid gains towards food security targets new funding structures need to be embraced. Such funding needs to serve both the core and collaborative activities of the fundamental, pre-breeding and breeding research communities in order to expedite the translation of innovative research into the fields of primary producers.


Assuntos
Cruzamento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Produtos Agrícolas/genética , Abastecimento de Alimentos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Sorghum/genética , Sorghum/metabolismo , Sorghum/fisiologia , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...