Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Psychiatr Res ; 50: 42-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24360505

RESUMO

Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats.


Assuntos
Encéfalo/efeitos dos fármacos , Ácidos Graxos Ômega-3/metabolismo , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Dieta , Fluoxetina/análogos & derivados , Fluoxetina/sangue , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Long-Evans , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/sangue , Natação , Ácido alfa-Linolênico/deficiência
2.
Pharmacol Biochem Behav ; 114-115: 1-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24090922

RESUMO

While translational evidence suggests that long-chain omega-3 fatty acid status is positively associated with the efficacy of selective serotonin reuptake inhibitor drugs, the neurochemical mechanisms mediating this interaction are not known. Here, we investigated the effects of dietary omega-3 (n-3) fatty acid insufficiency on the neurochemical and behavioral effects of chronic fluoxetine (FLX) treatment. Female rats were fed diets with (CON, n=56) or without (DEF, n=40) the n-3 fatty acids during peri-adolescent development (P21-P90), and one half of each group was administered FLX (10mg/kg/day) for 30days (P60-P90) prior to testing. In adulthood (P90), regional brain serotonin (5-HT) and 5-hydroxyindoleacetic (5-HIAA) concentrations, presynaptic markers of 5-HT neurotransmission, behavioral responses in the forced swim test (FST), and plasma FLX and norfluoxetine (NFLX) concentrations were investigated. Peri-adolescent n-3 insufficiency led to significant reductions in cortical docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-25%, p≤0.0001) and DEF+FLX (-28%, p≤0.0001) rats. Untreated DEF rats exhibited significantly lower regional 5-HIAA/5-HT ratios compared with untreated CON rats, but exhibited similar behavioral responses in the FST. In both CON and DEF rats, chronic FLX treatment similarly and significantly decreased 5-HIAA concentrations and the 5-HIAA/5-HT ratio in the hypothalamus, hippocampus, and nucleus accumbens, brainstem tryptophan hydroxylase-2 mRNA expression, and immobility in the FST. While the FLX-induced reduction in 5-HIAA concentrations in the prefrontal cortex was significantly blunted in DEF rats, the reduction in the 5-HIAA/5-HT ratio was similar to CON rats. Although plasma FLX and NFLX levels were not significantly different in DEF and CON rats, the NFLX/FLX ratio was significantly lower in DEF+FLX rats. These preclinical data demonstrate that n-3 fatty acid deficiency does not significantly reduce the effects of chronic FLX treatment on central 5-HT turnover or behavior in the FST in female rats.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ácidos Graxos Ômega-3/metabolismo , Fluoxetina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Serotonina/metabolismo , Natação , Animais , Sequência de Bases , Peso Corporal/efeitos dos fármacos , Tronco Encefálico/metabolismo , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Primers do DNA , Estro/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Fluoxetina/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
3.
Prog Neuropsychopharmacol Biol Psychiatry ; 34(7): 1317-21, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20655971

RESUMO

Omega-3 (n-3) polyunsaturated fatty acids (PUFA) and fluoxetine (FLX) have additive effects in the treatment of major depressive disorder, and FLX up-regulates genes that regulate fatty acid biosynthesis in vitro. Although these data suggest that FLX may augment n-3 fatty acid biosynthesis, the in vivo effects of FLX treatment on PUFA biosynthesis and peripheral and central membrane compositions are not known. In the present study, male and female rats were treated with FLX (10 mg/kg/day) through their drinking water for 30 days (P60-P90). Plasma FLX and norfluoxetine (NFLX) concentrations were determined by liquid chromatography tandem mass spectrometry, and erythrocyte and prefrontal cortex (PFC) fatty acid composition determined by gas chromatography. To confirm central effects of FLX, serotonin turnover in the PFC was determined by high performance liquid chromatography. Chronic FLX treatment resulted in clinically-relevant plasma FLX concentrations in male and female rats, and significantly decreased serotonin turnover in the PFC. After correcting for multiple comparisons, chronic FLX treatment did not significantly alter erythrocyte fatty acid composition in male or female rats. Chronic FLX treatment significantly and selectively increased docosapentaenoic acid (22:5n-6) in the PFC of female rats, but not in male rats. These preclinical findings do not support the hypothesis that chronic FLX treatment increases n-3 fatty acid biosynthesis or membrane composition.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Eritrócitos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fluoxetina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Cromatografia Gasosa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Fluoxetina/análogos & derivados , Fluoxetina/sangue , Masculino , Distribuição Aleatória , Ratos , Ratos Long-Evans , Serotonina/metabolismo
4.
Schizophr Res ; 107(2-3): 150-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18993032

RESUMO

Prior clinical studies suggest that chronic treatment with atypical antipsychotic medications increase erythrocyte and postmortem prefrontal cortex (PFC) omega-3 fatty acid composition in patients with schizophrenia (SZ). However, because human tissue phospholipid omega-3 fatty acid composition is potentially influenced by multiple extraneous variables, definitive evaluation of this putative mechanism of action requires an animal model. In the present study, we determined the effects of chronic treatment with the atypical antipsychotic risperidone (RISP, 3.0 mg/kg/d) on erythrocyte and PFC omega-3 fatty acid composition in rats maintained on a diet with or without the dietary omega-3 fatty acid precursor, alpha-linolenic acid (ALA, 18:3n-3). Chronic RISP treatment resulted in therapeutically-relevant plasma RISP and 9-OH-RISP concentrations (18+/-2.6 ng/ml), and significantly increased erythrocyte docosahexaenoic acid (DHA, 22:6n-3, +22%, p=0.0003) and docosapentaenoic acid (22:5n-3, +18%, p=0.01) composition, and increased PFC DHA composition (+7%, p=0.03) in rats maintained on the ALA+ diet. In contrast, chronic RISP did not alter erythrocyte or PFC omega-3 fatty acid composition in rats maintained on the ALA- diet. Chronic RISP treatment did not alter erythrocyte or PFC arachidonic acid (AA, 20:4n-6) composition. These data suggest that chronic RISP treatment significantly augments ALA-DHA biosynthesis, and preferentially increases peripheral and central membrane omega-3 fatty acid composition. Augmented omega-3 fatty acid biosynthesis and membrane composition represents a novel mechanism of action that may contribute in part to the efficacy of RISP in the treatment of SZ.


Assuntos
Eritrócitos/efeitos dos fármacos , Ácidos Graxos Ômega-3/sangue , Córtex Pré-Frontal/efeitos dos fármacos , Risperidona/farmacologia , Animais , Ácido Araquidônico/sangue , Ácidos Docosa-Hexaenoicos/sangue , Eritrócitos/metabolismo , Ácidos Graxos Insaturados/sangue , Masculino , Ratos , Ratos Long-Evans , Ácido alfa-Linolênico/administração & dosagem
5.
Neuropharmacology ; 55(7): 1121-30, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18674550

RESUMO

3,4-Methlylenedioxymethamphetamine (MDMA) administration (4 x 15 mg/kg) on a single day has been shown to cause path integration deficits in rats. While most animal experiments focus on single binge-type models of MDMA use, many MDMA users take the drug on a recurring basis. The purpose of this study was to compare the effects of repeated single-day treatments with MDMA (4 x 15 mg/kg) once weekly for 5 weeks to animals that only received MDMA on week 5 and saline on weeks 1-4. In animals treated with MDMA for 5 weeks, there was an increase in time spent in the open area of the elevated zero maze suggesting a decrease in anxiety or increase in impulsivity compared to the animals given MDMA for 1 week and saline treated controls. Regardless of dosing regimen, MDMA treatment produced path integration deficits as evidenced by an increase in latency to find the goal in the Cincinnati water maze. Animals treated with MDMA also showed a transient hypoactivity that was not present when the animals were re-tested at the end of cognitive testing. In addition, both MDMA-treated groups showed comparable hyperactive responses to a later methamphetamine challenge. No differences were observed in spatial learning in the Morris water maze during acquisition or reversal but MDMA-related deficits were seen on reduced platform-size trials. Taken together, the data show that a single-day regimen of MDMA induces deficits similar to that of multiple weekly treatments.


Assuntos
Alucinógenos/farmacologia , Aprendizagem/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Animais , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Natação/psicologia , Fatores de Tempo
6.
Biol Psychiatry ; 59(12): 1219-26, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16324685

RESUMO

BACKGROUND: +/-3,4-Methylenedioxymethamphetamine (MDMA) is a recreational drug that causes cognitive deficits in humans. A rat model for learning and memory deficits has not been established, although some cognitive deficits have been reported. METHODS: Male Sprague-Dawley rats were treated with MDMA (15 mg/kg x 4 doses) or saline (SAL) (n = 20/treatment group) and tested in different learning paradigms: 1) path integration in the Cincinnati water maze (CWM), 2) spatial learning in the Morris water maze (MWM), and 3) novel object recognition (NOR). One week after drug administration, testing began in the CWM, then four phases of MWM, and finally NOR. Following behavioral testing, monoamine levels were assessed. RESULTS: +/-3,4-Methylenedioxymethamphetamine-treated rats committed more CWM errors than did SAL-treated rats. +/-3,4-Methylenedioxymethamphetamine-treated animals were further from the former platform position during each 30-second MWM probe trial but showed no differences during learning trials with the platform present. There were no group differences in NOR. +/-3,4-Methylenedioxymethamphetamine depleted serotonin in all brain regions and dopamine in the striatum. CONCLUSIONS: +/-3,4-Methylenedioxymethamphetamine produced MWM reference memory deficits even after complex learning in the CWM, where deficits in path integration learning occurred. Assessment of path integration may provide a sensitive index of MDMA-induced learning deficits.


Assuntos
Comportamento Animal/efeitos dos fármacos , Alucinógenos/farmacologia , Aprendizagem/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Comportamento Espacial/efeitos dos fármacos , Análise de Variância , Animais , Cognição/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Cloreto de Sódio/administração & dosagem , Fatores de Tempo
7.
Brain Res ; 1039(1-2): 97-107, 2005 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-15781051

RESUMO

We have previously shown that +/-3,4-methylenedioxymethamphetamine (MDMA) treatment from P11 to P20 in rats produces deficits in cognitive ability when these animals are tested in adulthood. The purpose of this experiment was to explore the neuroendocrine and neurochemical changes produced by MDMA treatment on P11. We examined monoamines in the hippocampus and striatum and the serotonin transporter in the hippocampus as well as pituitary and adrenal output following administration of MDMA (10 mg/kg, 4 times) on postnatal day 11. Significant depletions in serotonin were evident in the hippocampus 1 h and in the striatum 24 h after the first dose and remained reduced 78 h later. No changes in serotonin transporter were observed following MDMA treatment, although females had lower levels than males. No changes in dopamine were detected. The metabolites of serotonin and dopamine had different profiles than the parent compounds after MDMA administration. Plasmatic ACTH was elevated immediately following MDMA and remained elevated for at least 1 h after the last dose and returned to baseline by 24 h. Corticosterone was increased after the first dose and remained increased for at least 24 h, and returned to baseline by 30 h. The decreases in serotonin in regions important for learning and memory in conjunction with elevated levels of corticosterone during a period of stress hyporesponsiveness suggest that these initial responses to MDMA may contribute to the long-term learning and memory deficits following neonatal MDMA exposure.


Assuntos
Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Serotoninérgicos/toxicidade , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/efeitos dos fármacos , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Corpo Estriado/metabolismo , Corticosterona/sangue , Dopamina/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Glicoproteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas do Tecido Nervoso/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina , Fatores Sexuais , Timo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...