Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2006, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443361

RESUMO

Spins associated to optically accessible solid-state defects have emerged as a versatile platform for exploring quantum simulation, quantum sensing and quantum communication. Pioneering experiments have shown the sensing, imaging, and control of multiple nuclear spins surrounding a single electron spin defect. However, the accessible size of these spin networks has been constrained by the spectral resolution of current methods. Here, we map a network of 50 coupled spins through high-resolution correlated sensing schemes, using a single nitrogen-vacancy center in diamond. We develop concatenated double-resonance sequences that identify spin-chains through the network. These chains reveal the characteristic spin frequencies and their interconnections with high spectral resolution, and can be fused together to map out the network. Our results provide new opportunities for quantum simulations by increasing the number of available spin qubits. Additionally, our methods might find applications in nano-scale imaging of complex spin systems external to the host crystal.

2.
Nature ; 606(7916): 884-889, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35512730

RESUMO

Solid-state spin qubits is a promising platform for quantum computation and quantum networks1,2. Recent experiments have demonstrated high-quality control over multi-qubit systems3-8, elementary quantum algorithms8-11 and non-fault-tolerant error correction12-14. Large-scale systems will require using error-corrected logical qubits that are operated fault tolerantly, so that reliable computation becomes possible despite noisy operations15-18. Overcoming imperfections in this way remains an important outstanding challenge for quantum science15,19-27. Here, we demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond. Our approach is based on the five-qubit code with a recently discovered flag protocol that enables fault tolerance using a total of seven qubits28-30. We encode the logical qubit using a new protocol based on repeated multi-qubit measurements and show that it outperforms non-fault-tolerant encoding schemes. We then fault-tolerantly manipulate the logical qubit through a complete set of single-qubit Clifford gates. Finally, we demonstrate flagged stabilizer measurements with real-time processing of the outcomes. Such measurements are a primitive for fault-tolerant quantum error correction. Although future improvements in fidelity and the number of qubits will be required to suppress logical error rates below the physical error rates, our realization of fault-tolerant protocols on the logical-qubit level is a key step towards quantum information processing based on solid-state spins.

3.
Science ; 374(6574): 1474-1478, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34735218

RESUMO

The discrete time crystal (DTC) is a nonequilibrium phase of matter that spontaneously breaks time-translation symmetry. Disorder-induced many-body localization can stabilize the DTC phase by breaking ergodicity and preventing thermalization. Here, we observe the hallmark signatures of the many-body­localized DTC using a quantum simulation platform based on individually controllable carbon-13 nuclear spins in diamond. We demonstrate long-lived period-doubled oscillations and confirm that they are robust for generic initial states, thus showing the characteristic time-crystalline order across the many-body spectrum. Our results are consistent with the realization of an out-of-equilibrium Floquet phase of matter and introduce a programmable quantum simulator based on solid-state spins for exploring many-body physics.

4.
Sci Rep ; 10(1): 14884, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913230

RESUMO

Efficiently detecting and characterizing individual spins in solid-state hosts is an essential step to expand the fields of quantum sensing and quantum information processing. While selective detection and control of a few 13C nuclear spins in diamond have been demonstrated using the electron spin of nitrogen-vacancy (NV) centers, a reliable, efficient, and automatic characterization method is desired. Here, we develop an automated algorithmic method for decomposing spectral data to identify and characterize multiple nuclear spins in diamond. We demonstrate efficient nuclear spin identification and accurate reproduction of hyperfine interaction components for both virtual and experimental nuclear spectroscopy data. We conduct a systematic analysis of this methodology and discuss the range of hyperfine interaction components of each nuclear spin that the method can efficiently detect. The result demonstrates a systematic approach that automatically detects nuclear spins with the aid of computational methods, facilitating the future scalability of devices.

5.
Nature ; 576(7787): 411-415, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31853078

RESUMO

Nuclear magnetic resonance (NMR) is a powerful method for determining the structure of molecules and proteins1. Whereas conventional NMR requires averaging over large ensembles, recent progress with single-spin quantum sensors2-9 has created the prospect of magnetic imaging of individual molecules10-13. As an initial step towards this goal, isolated nuclear spins and spin pairs have been mapped14-21. However, large clusters of interacting spins-such as those found in molecules-result in highly complex spectra. Imaging these complex systems is challenging because it requires high spectral resolution and efficient spatial reconstruction with sub-ångström precision. Here we realize such atomic-scale imaging using a single nitrogen vacancy centre as a quantum sensor, and demonstrate it on a model system of 27 coupled 13C nuclear spins in diamond. We present a multidimensional spectroscopy method that isolates individual nuclear-nuclear spin interactions with high spectral resolution (less than 80 millihertz) and high accuracy (2 millihertz). We show that these interactions encode the composition and inter-connectivity of the cluster, and develop methods to extract the three-dimensional structure of the cluster with sub-ångström resolution. Our results demonstrate a key capability towards magnetic imaging of individual molecules and other complex spin systems9-13.

6.
Nat Commun ; 9(1): 2552, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959326

RESUMO

Single electron spins coupled to multiple nuclear spins provide promising multi-qubit registers for quantum sensing and quantum networks. The obtainable level of control is determined by how well the electron spin can be selectively coupled to, and decoupled from, the surrounding nuclear spins. Here we realize a coherence time exceeding a second for a single nitrogen-vacancy electron spin through decoupling sequences tailored to its microscopic nuclear-spin environment. First, we use the electron spin to probe the environment, which is accurately described by seven individual and six pairs of coupled carbon-13 spins. We develop initialization, control and readout of the carbon-13 pairs in order to directly reveal their atomic structure. We then exploit this knowledge to store quantum states in the electron spin for over a second by carefully avoiding unwanted interactions. These results provide a proof-of-principle for quantum sensing of complex multi-spin systems and an opportunity for multi-qubit quantum registers with long coherence times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...