Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 204(2): 279-288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38366067

RESUMO

In temperate lakes, eutrophication and warm temperatures can promote cyanobacteria blooms that reduce water quality and impair food-chain support. Although parasitic chytrids of phytoplankton might compete with zooplankton, they also indirectly support zooplankton populations through the "mycoloop", which helps move energy and essential dietary molecules from inedible phytoplankton to zooplankton. Here, we consider how the mycoloop might fit into the biodiversity-ecosystem functioning (BEF) framework. BEF considers how more diverse communities can benefit ecosystem functions like zooplankton production. Chytrids are themselves part of pelagic food webs and they directly contribute to zooplankton diets through spore production and by increasing host edibility. The additional way that chytrids might support BEF is if they engage in "kill-the-winner" dynamics. In contrast to grazers, which result in "eat-the-edible" dynamics, kill-the-winner dynamics can occur for host-specific infectious diseases that control the abundance of dominant (in this case inedible) hosts and thus limit the competitive exclusion of poorer (in this case edible) competitors. Thus, if phytoplankton diversity provides functions, and chytrids support algal diversity, chytrids could indirectly favour edible phytoplankton. All three mechanisms are linked to diversity and therefore provide some "insurance" for zooplankton production against the impacts of eutrophication and warming. In our perspective piece, we explore evidence for the chytrid insurance hypothesis, identify exceptions and knowledge gaps, and outline future research directions.


Assuntos
Ecossistema , Seguro , Animais , Zooplâncton , Fitoplâncton , Biodiversidade , Dinâmica Populacional
2.
J Plankton Res ; 45(3): 454-466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287682

RESUMO

Chytrid fungal parasites increase herbivory and dietary access to essential molecules, such as polyunsaturated fatty acids (PUFA), at the phytoplankton-zooplankton interface. Warming enhances cyanobacteria blooms and decreases algae-derived PUFA for zooplankton. Whether chytrids could support zooplankton with PUFA under global warming scenarios remains unknown. We tested the combined effect of water temperature (ambient: 18°C, heat: +6°C) and the presence of chytrids with Daphnia magna as the consumer, and Planktothrix rubescens as the main diet. We hypothesized that chytrids would support Daphnia fitness with PUFA, irrespective of water temperature. Heating was detrimental to the fitness of Daphnia when feeding solely on the Planktothrix diet. Chytrid-infected Planktothrix diet alleviated the negative impact of heat and could support Daphnia survival, somatic growth and reproduction. Carbon stable isotopes of fatty acids highlighted a ~3x more efficient n-3 than n-6 PUFA conversion by Daphnia feeding on the chytrid-infected diet, irrespective of temperature. The chytrid diet significantly increased eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (ARA; 20:4n-6) retention in Daphnia. The EPA retention remained unaffected, while ARA retention increased in response to heat. We conclude that chytrids support pelagic ecosystem functioning under cyanobacteria blooms and global warming via chytrids-conveyed PUFA toward higher trophic levels.

3.
Freshw Biol ; 68(1): 77-90, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37064759

RESUMO

Chytrid fungal parasites convert dietary energy and essential dietary molecules, such as long-chain (LC) polyunsaturated fatty acids (PUFA), from inedible algal/cyanobacteria hosts into edible zoospores. How the improved biochemical PUFA composition of chytrid-infected diet may extend to zooplankton, linking diet quality to consumer fitness, remains unexplored.Here, we assessed the trophic role of chytrids in supporting dietary energy and PUFA requirements of the crustacean zooplankton Daphnia, when feeding on the filamentous cyanobacterium Planktothrix.Only Daphnia feeding on chytrid-infected Planktothrix reproduced successfully and had significantly higher survival and growth rates compared with Daphnia feeding on the sole Planktothrix diet. While the presence of chytrids resulted in a two-fold increase of carbon ingested by Daphnia, carbon assimilation increased by a factor of four, clearly indicating enhanced carbon transfer efficiency with chytrid presence.Bulk carbon (δ 13C) and nitrogen (δ 15N) stable isotopes did not indicate any treatment-specific dietary effects on Daphnia, nor differences in trophic position among diet sources and the consumer. Compound-specific carbon isotopes of fatty acids (δ 13CFA), however, revealed that chytrids bioconverted short-chain to LC-PUFA, making it available for Daphnia. Chytrids synthesised the ω-3 PUFA stearidonic acid de novo, which was selectively retained by Daphnia. Values of δ 13CFA demonstrated that Daphnia also bioconverted short-chain to LC-PUFA.We provide isotopic evidence that chytrids improved the dietary provision of LC-PUFA for Daphnia and enhanced their fitness. We argue for the existence of a positive feedback loop between enhanced Daphnia growth and herbivory in response to chytrid-mediated improved diet quality. Chytrids upgrade carbon from the primary producer and facilitate energy and PUFA transfer to primary consumers, potentially also benefitting upper trophic levels of pelagic food webs.

4.
Glob Chang Biol ; 29(11): 3054-3071, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946870

RESUMO

Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.


Assuntos
Ecossistema , Plâncton , Animais , Zooplâncton/fisiologia , Biodiversidade , Biomassa , Fitoplâncton/fisiologia , Cadeia Alimentar
5.
Hydrobiologia ; 848(1): 53-75, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32836348

RESUMO

Our understanding on phytoplankton diversity has largely been progressing since the publication of Hutchinson on the paradox of the plankton. In this paper, we summarise some major steps in phytoplankton ecology in the context of mechanisms underlying phytoplankton diversity. Here, we provide a framework for phytoplankton community assembly and an overview of measures on taxonomic and functional diversity. We show how ecological theories on species competition together with modelling approaches and laboratory experiments helped understand species coexistence and maintenance of diversity in phytoplankton. The non-equilibrium nature of phytoplankton and the role of disturbances in shaping diversity are also discussed. Furthermore, we discuss the role of water body size, productivity of habitats and temperature on phytoplankton species richness, and how diversity may affect the functioning of lake ecosystems. At last, we give an insight into molecular tools that have emerged in the last decades and argue how it has broadened our perspective on microbial diversity. Besides historical backgrounds, some critical comments have also been made.

6.
Sci Total Environ ; 756: 144074, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33303198

RESUMO

Recent studies suggest that climate change, with warmer water temperatures and lower and longer low flows, may enhance harmful planktic cyanobacterial growth in lakes and large rivers. Concomitantly, controlling nutrient loadings has proven effective in reducing phytoplankton biomass especially in North America and Western Europe. In addition, the impact of invasive benthic filter-feeder species such as Corbicula on phytoplankton has largely been overlooked in large rivers, leading to even more uncertainty in predicting future trajectories in river water quality. To investigate how nutrient control, climate change and invasion of benthic filter-feeders may affect phytoplankton biomass and composition, we assembled a large database on the entire water course of the River Loire (France) over three decades (1991-2019). We focus on cyanobacteria to provide an in-depth analysis of the 30-year trend and insights on future possible trajectories. Since 1991, total phytoplankton and cyanobacteria biomasses have decreased 10-fold despite warmer water temperature (+0.23 °C·decade-1) and lower summer flow (-0.25 L·s-1·km-2·decade-1). In the long-term, the contribution of planktic cyanobacteria to total biomass was on average 2.8%. The main factors driving total phytoplankton and cyanobacteria biomasses were total phosphorus (4-fold decrease), the abundance of Corbicula clams (from absence before 1998 to 250-1250 individuals·m-2 after 2010), the duration of summer low flows and the intensity of summer heatwaves. The River Loire constitutes an example in Europe of how nutrient control can be an efficient mitigation strategy, counteracting already visible effects of climate change on the thermal regime and flow pattern of the river. This may hold true under future conditions, but further work is needed to account for the climate trajectory, land and water use scenarios, the risk of enhanced benthic biofilm and macrophyte proliferation, together with the spread of invasive filter-feeding bivalves.


Assuntos
Bivalves , Cianobactérias , Ar Condicionado , Animais , Biomassa , Mudança Climática , Europa (Continente) , Eutrofização , França , Humanos , Lagos , América do Norte , Nutrientes , Fósforo/análise , Fitoplâncton , Rios
7.
Ecosystems ; 23(6): 1254-1264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005096

RESUMO

Reduced body size is among the universal ecological responses to global warming. Our knowledge on how altered body size affects ecosystem functioning in ectothermic aquatic organisms is still limited. We analysed trends in the cell size structure of phytoplankton in the middle Danube River over a 34-year period at multiple levels: (1) average cell size of assemblages (ACS), (2) within the centric diatom community and (3) in the dominant centric diatom taxon: Stephanodiscus. We asked whether global warming and human impacts affected the average cell size of phytoplankton. Also, whether the altered size structure affected how chlorophyll-a, as an ecosystem functioning measure, relates to the ACS of phytoplankton. The cell size of phytoplankton decreased significantly at all organisation levels, and the assemblages became more dispersed in cell size over time. Environmental variables related to global warming and human impacts affected the ACS of phytoplankton significantly. The relationship between chlorophyll-a and the ACS of phytoplankton shifted from negative linear to broad and then narrow hump shape over time. Longer water residence time, warming and decline in nutrients and suspended solids decrease the ACS of phytoplankton in the middle Danube and expectedly in other large rivers. Our results suggest that cell size decrease in phytoplankton, especially of centric diatoms, constrains planktic algal biomass production in large rivers, independently of algal density. Such cell size decrease may also affect higher trophic levels and enhance the more frequent occurrence of "clear-water" plankton in large, human-impacted rivers under global change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...