Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 76: 127123, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36563592

RESUMO

BACKGROUND: The status of heavy metals in children with lower urinary tract pathology that may harm the upper tract, e.g., neuropathic bladder and posterior urethral valve and its relationship with oxidative stress has not been adequately investigated. Therefore, the object of the current work was to evaluate the concentrations of copper, zinc, cadmium and lead and their relations with levels of catalase (CAT), malondialdehyde (MDA) and glutathione (GSH) in boys with neuropathic bladder and posterior urethral valve. METHODS: Thirty-six children with neuropathic bladder, 35 children with posterior urethral valve and 33 health controls were included in the study. In addition to routine laboratory tests, blood samples were collected from patients and controls to assess levels of Cu, Zn, Cd and Pb in addition to plasma concentrations of CAT, MDA and GSH. RESULTS: Significantly elevated levels of Cu, Pb, CAT, MDA and GSH and significantly lower concentration of blood Zn were found in the studied groups compared to the controls. In the posterior urethral valve group, blood level of Cu was positively correlated with GSH while a significantly negative relation was observed between blood Zn and CAT activity among the neuropathic bladder patients. CONCLUSION: Neuropathic bladder and posterior urethral valve may lead to abnormalities in the blood levels of heavy metals (i.e. Cu, Pb and Zn) and markers of oxidative stress (CAT, MDA and GSH). Therefore, the levels of theses metal ions should be monitored during the treatment course of neuropathic bladder and posterior urethral valve patients to prevent or minimize long-term oxidative injury.


Assuntos
Metais Pesados , Bexiga Urinaria Neurogênica , Sistema Urinário , Humanos , Chumbo , Cobre , Estresse Oxidativo , Cádmio , Glutationa/metabolismo , Sistema Urinário/metabolismo
2.
Heliyon ; 7(1): e06062, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33537487

RESUMO

Bio-matrix of rice husk and Mobil Composition of Matter No. 41 (MCM-41) was modified with alizarin red S for preconcentration of Pd2+ prior flame atomic absorption spectrometric determination. The prepared bio-matrix (RH@MCM-41@ARS) was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope, energy dispersive X-ray spectrometer (SEM/EDX) and surface area studies. The impact of different parameters (solution pH, amount of sorbent, contact time, sample volume, initial Pd2+ concentration and diverse ions) on the uptake of Pd2+ were evaluated. The maximum adsorption capacity of Pd2+ onto RH@MCM-41@ARS was 198.2 mg g-1 at optimum conditions. Applying the optimized procedure as a preconcentration step led to limit of detection of 0.13 µg L-1 and dynamic analytical range up to 500 µg L-1. The sorbent was regenerated by 0.5 mol L-1 thiourea for at least 10 cycles without significant reduction of adsorption capacity. The method was applied for preconcentration of Pd2+ from real samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...