Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14571, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666909

RESUMO

The emerging CdTe-BeTe semiconductor alloy that exhibits a dramatic mismatch in bond covalency and bond stiffness clarifying its vibrational-mechanical properties is used as a benchmark to test the limits of the percolation model (PM) worked out to explain the complex Raman spectra of the related but less contrasted Zn1-xBex-chalcogenides. The test is done by way of experiment ([Formula: see text]), combining Raman scattering with X-ray diffraction at high pressure, and ab initio calculations ([Formula: see text] ~ 0-0.5; [Formula: see text]~1). The (macroscopic) bulk modulus [Formula: see text] drops below the CdTe value on minor Be incorporation, at variance with a linear [Formula: see text] versus [Formula: see text] increase predicted ab initio, thus hinting at large anharmonic effects in the real crystal. Yet, no anomaly occurs at the (microscopic) bond scale as the regular bimodal PM-type Raman signal predicted ab initio for Be-Te in minority ([Formula: see text]~0, 0.5) is barely detected experimentally. At large Be content ([Formula: see text]~1), the same bimodal signal relaxes all the way down to inversion, an unprecedented case. However, specific pressure dependencies of the regular ([Formula: see text]~0, 0.5) and inverted ([Formula: see text]~1) Be-Te Raman doublets are in line with the predictions of the PM. Hence, the PM applies as such to Cd1-xBexTe without further refinement, albeit in a "relaxed" form. This enhances the model's validity as a generic descriptor of phonons in alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...