Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 52016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26799336

RESUMO

CLC secondary active transporters exchange Cl(-) for H(+). Crystal structures have suggested that the conformational change from occluded to outward-facing states is unusually simple, involving only the rotation of a conserved glutamate (Gluex) upon its protonation. Using (19)F NMR, we show that as [H(+)] is increased to protonate Gluex and enrich the outward-facing state, a residue ~20 Å away from Gluex, near the subunit interface, moves from buried to solvent-exposed. Consistent with functional relevance of this motion, constriction via inter-subunit cross-linking reduces transport. Molecular dynamics simulations indicate that the cross-link dampens extracellular gate-opening motions. In support of this model, mutations that decrease steric contact between Helix N (part of the extracellular gate) and Helix P (at the subunit interface) remove the inhibitory effect of the cross-link. Together, these results demonstrate the formation of a previously uncharacterized 'outward-facing open' state, and highlight the relevance of global structural changes in CLC function.


Assuntos
Canais de Cloreto/química , Canais de Cloreto/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
2.
Biophys J ; 109(12): 2602-2613, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682817

RESUMO

Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible.


Assuntos
Domínio Catalítico , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo , Sequência de Aminoácidos , Biocatálise , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica
3.
J Biol Chem ; 290(15): 9465-77, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713064

RESUMO

K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling.


Assuntos
Membrana Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/química , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fluidez de Membrana , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Modelos Químicos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Prenilação de Proteína , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Serina/química , Serina/genética , Serina/metabolismo , Ressonância de Plasmônio de Superfície
4.
J Biomol NMR ; 61(3-4): 209-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631353

RESUMO

CLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state (13)C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H(+)) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H(+)-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl(-)-permeation pathway, to the extracellular solution. The H(+)-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H(+) binding is mechanistically coupled to closing of the intracellular access-pathway for Cl(-).


Assuntos
Antiporters/ultraestrutura , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Antiportadores de Cloreto-Bicarbonato/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Ressonância Magnética Nuclear Biomolecular/métodos , Radioisótopos de Carbono , Cristalografia por Raios X , Cisteína/química , Escherichia coli/metabolismo , Lisina/química , Metionina/química , Metilação , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína
5.
Molecules ; 18(6): 7103-19, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23778120

RESUMO

NMR is commonly used to investigate macromolecular interactions. However, sensitivity problems hamper its use for studying such interactions at low physiologically relevant concentrations. At high concentrations, proteins or peptides tend to aggregate. In order to overcome this problem, we make use of reductive ¹³C-methylation to study protein interactions at low micromolar concentrations. Methyl groups in dimethyl lysines are degenerate with one ¹³CH3 signal arising from two carbons and six protons, as compared to one carbon and three protons in aliphatic amino acids. The improved sensitivity allows us to study protein-protein or protein-peptide interactions at very low micromolar concentrations. We demonstrate the utility of this method by studying the interaction between the post-translationally lipidated hypervariable region of a human proto-oncogenic GTPase K-Ras and a calcium sensor protein calmodulin. Calmodulin specifically binds K-Ras and modulates its downstream signaling. This binding specificity is attributed to the unique lipidated hypervariable region of K-Ras. At low micromolar concentrations, the post-translationally modified hypervariable region of K-Ras aggregates and binds calmodulin in a non-specific manner, hence conventional NMR techniques cannot be used for studying this interaction, however, upon reductively methylating the lysines of calmodulin, we detected signals of the lipidated hypervariable region of K-Ras at physiologically relevant nanomolar concentrations. Thus, we utilize ¹³C-reductive methylation of lysines to enhance the sensitivity of conventional NMR methods for studying protein interactions at low concentrations.


Assuntos
Isótopos de Carbono/química , Lisina/química , Ressonância Magnética Nuclear Biomolecular , Calmodulina/química , Calmodulina/metabolismo , Humanos , Metilação , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Oxirredução , Prenilação , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sensibilidade e Especificidade
6.
Chem Biol ; 19(11): 1460-70, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23177200

RESUMO

The lack of small-molecule inhibitors for anion-selective transporters and channels has impeded our understanding of the complex mechanisms that underlie ion passage. The ubiquitous CLC "Chloride Channel" family represents a unique target for biophysical and biochemical studies because its distinctive protein fold supports both passive chloride channels and secondary-active chloride-proton transporters. Here, we describe the synthesis and characterization of a specific small-molecule inhibitor directed against a CLC antiporter (ClC-ec1). This compound, 4,4'-octanamidostilbene-2,2'-disulfonate (OADS), inhibits ClC-ec1 with low micromolar affinity and has no specific effect on a CLC channel (ClC-1). Inhibition of ClC-ec1 occurs by binding to two distinct intracellular sites. The location of these sites and the lipid dependence of inhibition suggest potential mechanisms of action. This compound will empower research to elucidate differences between antiporter and channel mechanisms and to develop treatments for CLC-mediated disorders.


Assuntos
Antiporters/antagonistas & inibidores , Canais de Cloreto/metabolismo , Estilbenos/farmacologia , Ácidos Sulfônicos/farmacologia , Antiporters/química , Antiporters/genética , Antiporters/metabolismo , Sítios de Ligação , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Mutação , Estilbenos/metabolismo , Ácidos Sulfônicos/metabolismo
7.
Protein Expr Purif ; 73(2): 125-31, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20566322

RESUMO

A p21 GTPase K-Ras4B plays an important role in human cancer and represents an excellent target for cancer therapeutics. Currently, there are no drugs directly targeting K-Ras4B. In part, this is due to the lack of structural information describing unique features of K-Ras4B. Here we describe a methodology allowing production of soluble, well-folded K-Ras4B for structural analysis. The key points in K-Ras4B preparation are low temperature expression and extraction of K-Ras4B from the insoluble fraction using a nucleotide loading procedure in the presence of Mg(2+) and citrate, a low affinity chelator. Additionally, a significant amount of K-Ras4B could be extracted from the soluble fraction. We show that recombinant K-Ras4B is monomeric in solution. Excellent NMR signal dispersion suggests that the protein is well-folded and is amenable to solution structure determination. In addition, using phospholipid bilayer nanodiscs we show that recombinant K-Ras4B interacts with lipids and that this interaction is mediated by the C-terminal hypervariable region.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/isolamento & purificação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sequência de Aminoácidos , Humanos , Fosfolipídeos/genética , Dobramento de Proteína , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Solubilidade
8.
Biochemistry ; 48(32): 7575-83, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19583261

RESUMO

K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival, and motility. The p21 Ras proteins, such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry, we demonstrate that the hypervariable region of K-Ras4B contributes in a major way to the interaction with calmodulin, while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca(2+)-loaded calmodulin with micromolar affinity, while the GTP-gamma-S-loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sítios de Ligação , Calmodulina/genética , Humanos , Isoenzimas/genética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/fisiologia
10.
J Biomol NMR ; 43(4): 239-46, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19280122

RESUMO

Reductive methylation of lysine residues in proteins offers a way to introduce 13C methyl groups into otherwise unlabeled molecules. The 13C methyl groups on lysines possess favorable relaxation properties that allow highly sensitive NMR signal detection. One of the major limitations in the use of reductive methylation in NMR is the signal overlap of 13C methyl groups in NMR spectra. Here we show that the uniform influence of the solvent on chemical shifts of exposed lysine methyl groups could be overcome by adjusting the pH of the buffering solution closer to the pKa of lysine side chains. Under these conditions, due to variable pKa values of individual lysine side chains in the protein of interest different levels of lysine protonation are observed. These differences are reflected in the chemical shift differences of methyl groups in reductively methylated lysines. We show that this approach is successful in four different proteins including Ca2+-bound Calmodulin, Lysozyme, Ca2+-bound Troponin C, and Glutathione S-Transferase. In all cases significant improvement in NMR spectral resolution of methyl signals in reductively methylated proteins was obtained. The increased spectral resolution helps with more precise characterization of protein structural rearrangements caused by ligand binding as shown by studying binding of Calmodulin antagonist trifluoperazine to Calmodulin. Thus, this approach may be used to increase resolution in NMR spectra of 13C methyl groups on lysine residues in reductively methylated proteins that enhances the accuracy of protein structural assessment.


Assuntos
Lisina/química , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Isótopos de Carbono/química , Glutationa Transferase/química , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Metilação , Modelos Moleculares , Muramidase/química , Conformação Proteica , Troponina C/química , Troponina C/metabolismo
11.
J Biomol NMR ; 42(2): 143-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18819009

RESUMO

We show that reductive methylation of proteins can be used for highly sensitive NMR identification of conformational changes induced by metal- and small molecule binding, as well as protein-protein interactions. Reductive methylation of proteins introduces two (13)C-methyl groups on each lysine in the protein of interest. This method works well even when the lysines are not actively involved in the interaction, due to changes in the microenvironments of lysine residues. Most lysine residues are located on the protein exterior, and the exposed (13)C-methyl groups may exhibit rapid localized motions. These motions could be faster than the tumbling rate of the molecule as a whole. Thus, this technique has great potential in the study of large molecular weight systems which are currently beyond the scope of conventional NMR methods.


Assuntos
Calmodulina/química , Ligantes , Lisina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Humanos , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA