Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 1677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973740

RESUMO

Tuberculosis (TB) is currently one of the leading causes of global mortality. Medical non-compliance due to the length of the treatment and antibiotic side effects has led to the emergence of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (M. tb) that are difficult to treat. A current therapeutic strategy attempting to circumvent this issue aims to enhance drug delivery to reduce the duration of the antibiotic regimen or dosage of first-line antibiotics. One such agent that may help is cyclic peptide [R4W4], as it has been shown to have antibacterial properties (in combination with tetracycline) against methicillin-resistant Staphylococcus aureus (MRSA) in the past. The objective of this study is to test cyclic peptide [R4W4] both alone and in combination with current first-line antibiotics (either isoniazid or pyrazinamide) to study the effects of inhibition of M. tb inside in vitro human granulomas. Results from our studies indicate that [R4W4] is efficacious in controlling M. tb infection in the granulomas and has enhanced inhibitory effects in the presence of first-line antibiotics.


Assuntos
Antibióticos Antituberculose/farmacologia , Granuloma/tratamento farmacológico , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Pirazinamida/farmacologia , Tuberculose/tratamento farmacológico , Adolescente , Adulto , Idoso , Autofagia/efeitos dos fármacos , Citocinas/metabolismo , Quimioterapia Combinada , Granuloma/metabolismo , Granuloma/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Pessoa de Meia-Idade , Mycobacterium tuberculosis/crescimento & desenvolvimento , Estresse Oxidativo , Tuberculose/metabolismo , Tuberculose/microbiologia , Adulto Jovem
2.
J Clin Med ; 9(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824563

RESUMO

Dendritic cells are the principal antigen-presenting cells (APCs) in the host defense mechanism. An altered dendritic cell response increases the risk of susceptibility of infections, such as Mycobacterium tuberculosis (M. tb), and the survival of the human immunodeficiency virus (HIV). The altered response of dendritic cells leads to decreased activity of T-helper-1 (Th1), Th2, Regulatory T cells (Tregs), and Th17 cells in tuberculosis (TB) infections due to a diminishment of cytokine release from these APCs, while HIV infection leads to DC maturation, allowing DCs to migrate to lymph nodes and the sub-mucosa where they then transfer HIV to CD4 T cells, although there is controversy around this topic. Increases in the levels of the antioxidant glutathione (GSH) plays a critical role in maintaining dendritic cell redox homeostasis, leading to an adequate immune response with sufficient cytokine release and a subsequent robust immune response. Thus, an understanding of the intricate pathways involved in the dendritic cell response are needed to prevent co-infections and co-morbidities in individuals with TB and HIV.

3.
J Clin Med ; 9(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610643

RESUMO

Mycobacterium tuberculosis (M. tb) has been historically and is currently a threat to global public health. First-line antibiotics have been effective but proven to be burdensome as they have many potential adverse side effects. There has been a recent increase in the number of active tuberculosis (TB) cases due to a prevalence of multidrug and extensively drug-resistant strains of M. tb, and an increasing number of highly susceptible people such as those with Type 2 Diabetes (T2DM) and human immunodeficiency virus (HIV) infection. Multidrug-resistant M. tb infection (MDR-TB) is challenging to treat with existing therapeutics, so novel therapeutics and treatment strategies must be developed. Host-Directed Therapy (HDT) has been a potential target mechanism for effective clearance of infection. Host cell autophagy plays an essential role in antibacterial defense. The mammalian target of rapamycin (mTOR) has been negatively correlated with autophagy induction. Everolimus is an mTOR inhibitor that induces autophagy, but with higher water solubility. Therefore, targeting the mTOR pathway has the potential to develop novel and more effective combination drug therapy for TB. This study tested the effect of everolimus, alone and in combination with current first-line antibiotics (isoniazid and pyrazinamide), on the inhibition of M. tb inside in vitro human granulomas. We found that M. tb-infected in vitro granulomas treated with everolimus alone resulted in significantly decreased M. tb burden compared to similar granulomas in the control group. Cells treated with everolimus doses of either 1 nM or 2 nM in conjunction with pyrazinamide (PZA) produced a significant reduction in intracellular M. tb burden. Treatment groups that received everolimus alone in either 1 nM or 2 nM doses experienced a significant reduction in oxidative stress. Additionally, samples treated with 2 nM everolimus alone were observed to have significantly higher levels of autophagy and mTOR inhibition as well. Results from this study indicate that everolimus is efficacious in controlling M. tb infection in the granulomas and has additive effects when combined with the anti-TB drugs, isoniazid and pyrazinamide. This study has shown that everolimus is a promising host-directed therapeutic in the context of in vitro granuloma M. tb infection. Further study is warranted to better characterize these effects.

4.
Int Microbiol ; 23(2): 161-170, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31218537

RESUMO

A novel group of agents known as the indole-2-carboxamides (often referred to as indoleamides) have been shown to demonstrate high antimycobacterial activity. Studies have demonstrated that the best indoleamides possess desirable ADME/Tox properties, with less adverse effects and increased efficacy against both MDR-TB (multi-drug resistant TB) and XDR-TB (extensively drug-resistant TB). The primary mechanism of killing Mycobacterium tuberculosis (Mtb) by indoleamides is by disrupting the function of the essential mycolic acid transporter MmpL3 protein (Mycobacterial membrane protein Large 3). Therefore, targeting this essential mycobacterial transporter by small molecules opens new possibility for the development of novel and effective anti-TB agents. In the present study, we characterized the effects of indoleamides in altering the viability of Mtb in an in vitro granuloma model using immune cells derived from healthy subjects and those with type 2 diabetes mellitus (T2DM). Our results indicate that treatment with the best indoleamide 3 resulted in a significant reduction in the viability of Mtb in both THP-1 macrophages as well as in granulomas derived from healthy individuals and subjects with T2DM. Graphical Abstract.


Assuntos
Imunidade Inata/efeitos dos fármacos , Indóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Descoberta de Drogas , Granuloma/tratamento farmacológico , Granuloma/metabolismo , Granuloma/microbiologia , Voluntários Saudáveis , Humanos , Imunidade Celular/efeitos dos fármacos , Células THP-1 , Tuberculose/tratamento farmacológico
5.
J Clin Med ; 8(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569759

RESUMO

Mycobacterium tuberculosis (M. tb) is the etiological agent that is responsible for causing tuberculosis (TB). Although every year M. tb infection affects millions of people worldwide, the only vaccine that is currently available is the Bacille Calmette-Guérin (BCG) vaccine. However, the BCG vaccine has varying efficacy. Additionally, the first line antibiotics administered to patients with active TB often cause severe complications and side effects. To improve upon the host response mechanism in containing M. tb infection, our lab has previously shown that the addition of the biological antioxidant glutathione (GSH) has profound antimycobacterial effects. The aim of this study is to understand the additive effects of BCG vaccination and ex-vivo GSH enhancement in improving the immune responses against M. tb in both groups; specifically, their ability to mount an effective immune response against M. tb infection, maintain CD4+ and CD8+ T cells in the granulomas, their response to liposomal glutathione (L-GSH), with varying suboptimal levels of the first line antibiotics isoniazid (INH) and pyrazinamide (PZA), the expressions of programmed death receptor 1 (PD-1), and their ability to induce autophagy. Our results revealed that BCG vaccination, along with GSH enhancement, can prevent the loss of CD4+ and CD8+ T cells in the granulomas and improve the control of M. tb infection by decreasing the expressions of PD-1 and increasing autophagy and production of the cytokines interferon gamma IFN-γ and tumor necrosis factor-α (TNF-α).

6.
Adv Clin Chem ; 87: 141-159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30342710

RESUMO

Glutathione (GSH), often referred to as "the master antioxidant," participates not only in antioxidant defense systems, but many metabolic processes, and therefore its role cannot be overstated. GSH deficiency causes cellular risk for oxidative damage and thus as expected, GSH imbalance is observed in a wide range of pathological conditions including tuberculosis (TB), HIV, diabetes, cancer, and aging. Consequently, it is not surprising that GSH has attracted the attention of biological researchers and pharmacologists alike as a possible target for medical intervention. Here, we discuss the role GSH plays amongst these pathological conditions to illuminate how it can be used as a marker for human disease.


Assuntos
Glutationa/metabolismo , Estresse Oxidativo , Envelhecimento , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Diabetes Mellitus/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/análise , Infecções por HIV/metabolismo , Humanos , Neoplasias/metabolismo , Tuberculose/metabolismo , Vitamina D/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-30126957

RESUMO

Mycobacterium tuberculosis is the etiological agent that is responsible for causing tuberculosis (TB), which continues to affect millions of people worldwide, and the rate of resistance of M. tuberculosis to antibiotics is ever increasing. We tested the synergistic effects of N-acetyl cysteine (NAC; the precursor molecule for the synthesis of glutathione [GSH]) and individual first-line antibiotics typically given for the treatment of TB, such as isoniazid (INH), rifampin (RIF), ethambutol (EMB), and pyrazinamide (PZA), to improve the ability of macrophages to control intracellular M. tuberculosis infection. GSH, a pleiotropic antioxidant molecule, has previously been shown to display both antimycobacterial and immune-enhancing effects. Our results indicate that there was not only an increase in beneficial immunomodulatory effects but also a greater reduction in the intracellular viability of M. tuberculosis when macrophages were treated with the combination of antibiotics (INH, RIF, EMB, or PZA) and NAC.


Assuntos
Glutationa/farmacologia , Tuberculose/tratamento farmacológico , Adjuvantes Imunológicos/farmacologia , Antibacterianos/farmacologia , Antituberculosos/farmacologia , Linhagem Celular , Quimioterapia Combinada/métodos , Etambutol/farmacologia , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/farmacologia , Rifampina/farmacologia , Células THP-1/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...