Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(12): e1011679, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127831

RESUMO

The article presents a framework for a Bioinformatics competition that focuses on 4 key aspects: structure, model, overview, and perspectives. Structure represents the organizational framework employed to coordinate the main tasks involved in the competition. Model showcases the competition design, which encompasses 3 phases. Overview presents our case study, the League of Brazilian Bioinformatics (LBB) 2nd Edition. Finally, the section on perspectives provides a brief discussion of the LBB 2nd Edition, along with insights and feedback from participants. LBB is a biannual team competition launched in 2019 to promote the ongoing training of human resources in Bioinformatics and Computational Biology in Brazil. LBB aims to stimulate ongoing training in Bioinformatics by encouraging participation in competitions, promoting the organization of future Bioinformatics competitions, and fostering the integration of the Bioinformatics and Computational Biology community in the country, as well as collaboration among participants. The LBB 2nd Edition was launched in 2021 and featured 251 competitors forming 91 teams. Knowledge competitions promote learning, collaboration, and innovation, which are crucial for advancing scientific knowledge and solving real-world problems. In summary, this article serves as a valuable resource for individuals and organizations interested in developing knowledge competitions, offering a model based on our experience with LBB to benefit all levels of Bioinformatics trainees.


Assuntos
Biologia Computacional , Humanos , Brasil , Biologia Computacional/educação
2.
Immunotherapy ; 15(13): 1057-1072, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431617

RESUMO

Studies on the development of mRNA vaccines for central nervous system tumors have used gene expression profiles, clinical data and RNA sequencing from sources such as The Cancer Genome Atlas and Chinese Glioma Genome Atlas to identify effective antigens. These studies revealed several immune subtypes of glioma, each one linked to unique prognoses and genetic/immune-modulatory changes. Potential antigens include ARPC1B, BRCA2, COL6A1, ITGB3, IDH1, LILRB2, TP53 and KDR, among others. Patients with immune-active and immune-suppressive phenotypes were found to respond better to mRNA vaccines. While these findings indicate the potential of mRNA vaccines in cancer therapy, further research is required to optimize administration and adjuvant selection, and precisely identify target antigens.


Scientists study special vaccines for hard-to-treat brain tumors. They looked at things, such as information about patients and the small parts of cells that make up the tumor, to find ways to help. They found that brain tumors can make our body's defenses act differently. They also found some possible targets and unique defense patterns that are special to each patient when fighting these tumors. Patients with these special defenses and good targets might respond better to treatment with vaccines. This is exciting because it means that in the future, we might have treatments made for each person. But we still need to do more research to figure out how to get these vaccines to the tumor, so this research gives us hope that we can find better treatments and more choices for people with brain cancer. If we keep researching, we might find even better treatments in the future.


Assuntos
Vacinas Anticâncer , Glioma , Humanos , RNA Mensageiro/genética , Glioma/genética , Glioma/terapia , Prognóstico , Adjuvantes Imunológicos
3.
Genome Biol Evol ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36208292

RESUMO

Trypanosomatids belong to a remarkable group of unicellular, parasitic organisms of the order Kinetoplastida, an early diverging branch of the phylogenetic tree of eukaryotes, exhibiting intriguing biological characteristics affecting gene expression (intronless polycistronic transcription, trans-splicing, and RNA editing), metabolism, surface molecules, and organelles (compartmentalization of glycolysis, variation of the surface molecules, and unique mitochondrial DNA), cell biology and life cycle (phagocytic vacuoles evasion and intricate patterns of cell morphogenesis). With numerous genomic-scale data of several trypanosomatids becoming available since 2005 (genomes, transcriptomes, and proteomes), the scientific community can further investigate the mechanisms underlying these unusual features and address other unexplored phenomena possibly revealing biological aspects of the early evolution of eukaryotes. One fundamental aspect comprises the processes and mechanisms involved in the acquisition and loss of genes throughout the evolutionary history of these primitive microorganisms. Here, we present a comprehensive in silico analysis of pseudogenes in three major representatives of this group: Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. Pseudogenes, DNA segments originating from altered genes that lost their original function, are genomic relics that can offer an essential record of the evolutionary history of functional genes, as well as clues about the dynamics and evolution of hosting genomes. Scanning these genomes with functional proteins as proxies to reveal intergenic regions with protein-coding features, relying on a customized threshold to distinguish statistically and biologically significant sequence similarities, and reassembling remnant sequences from their debris, we found thousands of pseudogenes and hundreds of open reading frames, with particular characteristics in each trypanosomatid: mutation profile, number, content, density, codon bias, average size, single- or multi-copy gene origin, number and type of mutations, putative primitive function, and transcriptional activity. These features suggest a common process of pseudogene formation, different patterns of pseudogene evolution and extant biological functions, and/or distinct genome organization undertaken by those parasites during evolution, as well as different evolutionary and/or selective pressures acting on distinct lineages.


Assuntos
Parasitos , Trypanosoma brucei brucei , Animais , Pseudogenes , Filogenia , Fases de Leitura Aberta , Genoma , Trypanosoma brucei brucei/genética , Parasitos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA