Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(6): 2519-2531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193348

RESUMO

PURPOSE: The determination of blood-brain barrier (BBB) integrity and partial pressure of oxygen (pO2) in the brain is of substantial interest in several neurological applications. This study aimed to assess the feasibility of using trityl OX071-based pulse electron paramagnetic resonance imaging (pEPRI) to provide a quantitative estimate of BBB integrity and pO2 maps in mouse brains as a function of neuroinflammatory disease progression. METHODS: Five Connexin-32 (Cx32)-knockout (KO) mice were injected with lipopolysaccharide to induce neuroinflammation for imaging. Three wild-type mice were also used to optimize the imaging procedure and as control animals. An additional seven Cx32-KO mice were used to establish the BBB leakage of trityl using the colorimetric assay. All pEPRI experiments were performed using a preclinical instrument, JIVA-25 (25 mT/720 MHz), at times t = 0, 4, and 6 h following lipopolysaccharide injection. Two pEPRI imaging techniques were used: (a) single-point imaging for obtaining spatial maps to outline the brain and calculate BBB leakage using the signal amplitude, and (b) inversion-recovery electron spin echo for obtaining pO2 maps. RESULTS: A statistically significant change in BBB leakage was found using pEPRI with the progression of inflammation in Cx32 KO animals. However, the change in pO2 values with the progression of inflammation for these animals was not statistically significant. CONCLUSIONS: For the first time, we show the ability of pEPRI to provide pO2 maps in mouse brains noninvasively, along with a quantitative assessment of BBB leakage. We expect this study to open new queries from the field to explore the pathology of many neurological diseases and provide a path to new treatments.


Assuntos
Barreira Hematoencefálica , Doenças Neuroinflamatórias , Camundongos , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Camundongos Knockout , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Lipopolissacarídeos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Inflamação/diagnóstico por imagem , Conexinas
2.
Biomolecules ; 13(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37189458

RESUMO

Connexins are members of a family of integral membrane proteins that provide a pathway for both electrical and metabolic coupling between cells. Astroglia express connexin 30 (Cx30)-GJB6 and Cx43-GJA1, while oligodendroglia express Cx29/Cx31.3-GJC3, Cx32-GJB1, and Cx47-GJC2. Connexins organize into hexameric hemichannels (homomeric if all subunits are identical or heteromeric if one or more differs). Hemichannels from one cell then form cell-cell channels with a hemichannel from an apposed cell. (These are termed homotypic if the hemichannels are identical and heterotypic if the hemichannels differ). Oligodendrocytes couple to each other through Cx32/Cx32 or Cx47/Cx47 homotypic channels and they couple to astrocytes via Cx32/Cx30 or Cx47/Cx43 heterotypic channels. Astrocytes couple via Cx30/Cx30 and Cx43/Cx43 homotypic channels. Though Cx32 and Cx47 may be expressed in the same cells, all available data suggest that Cx32 and Cx47 cannot interact heteromerically. Animal models wherein one or in some cases two different CNS glial connexins have been deleted have helped to clarify the role of these molecules in CNS function. Mutations in a number of different CNS glial connexin genes cause human disease. Mutations in GJC2 lead to three distinct phenotypes, Pelizaeus Merzbacher like disease, hereditary spastic paraparesis (SPG44) and subclinical leukodystrophy.


Assuntos
Conexina 43 , Doenças Desmielinizantes , Animais , Humanos , Conexina 43/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Conexinas/genética , Conexinas/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética
3.
ACS Pharmacol Transl Sci ; 6(2): 306-319, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798471

RESUMO

Charcot-Marie-Tooth X1 (CMTX1) disease is an inherited peripheral neuropathy that arises from loss-of-function mutations in the protein connexin 32 (Cx32). CMTX1 currently lacks a pharmacologic approach toward disease management, and we have previously shown that modulating the expression of molecular chaperones using novologue therapy may provide a viable disease-modifying approach to treat metabolic and demyelinating neuropathies. Cemdomespib is an orally bioavailable novologue that manifests neuroprotective activity by modulating the expression of heat shock protein 70 (Hsp70). We examined if 1 to 5 months of daily cemdomespib therapy may improve neuropathic symptoms in three mouse models of CMTX1 (Cx32 deficient (Cx32def), T55I-Cx32def, and R75W-Cx32 mice). Daily drug therapy significantly improved motor nerve conduction velocity (MNCV) and grip strength in all three models, but the compound muscle action potential was only improved in Cx32def mice. Drug efficacy required Hsp70 as improvements in MNCV, and the grip strength was abrogated in Cx32def × Hsp70 knockout mice. Five months of novologue therapy was associated with improved neuromuscular junction morphology, femoral motor nerve myelination, reduction in foamy macrophages, and a decrease in Schwann cell c-jun levels. To determine if c-jun may be downstream of Hsp70 and necessary for drug efficacy, c-jun expression was specifically deleted in Schwann cells of Cx32def mice. While the deletion of c-jun worsened the neuropathy, cemdomespib therapy remained effective in improving MNCV and grip strength. Our data show that cemdomespib therapy improves CMTX1-linked neuropathy in an Hsp70-dependent but a c-jun-independent manner and without regard to the nature of the underlying Cx32 mutation.

4.
Exp Neurol ; 360: 114277, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36403785

RESUMO

The X-linked form of Charcot-Marie-Tooth disease (CMTX1) is the second most common form of CMT. In this study we used CRISPR/Cas9 to develop new "knock-in" models of CMTX1 that are more representative of the spectrum of mutations seen with CMTX1 than the Cx32 knockout (KO) mouse model used previously. We compared mice of four genotypes - wild-type, Cx32KO, p.T55I, and p.R75W. Sciatic motor conduction velocity slowing was the most robust electrophysiologic indicator of neuropathy, showing reductions in the Cx32KO by 3 months and in the p.T55I and p.R75W mice by 6 months. At both 6 and 12 months, all three mutant genotypes showed reduced four limb and hind limb grip strength compared to WT mice. Performance on 6 and 12 mm width balance beams revealed deficits that were most pronounced at on the 6 mm balance beam at 6 months of age. There were pathological changes of myelinated axons in the femoral motor nerve in all three mutant lines by 3 months of age, and these became more pronounced at 6 and 12 months of age; sensory nerves (femoral sensory and the caudal nerve of the tail) appeared normal at all ages examined. Our results demonstrate that mice can be used to show the pathogenicity of human GJB1 mutations, and these new models for CMTX1 should facilitate the preclinical work for developing treatments for CMTX1.


Assuntos
Doença de Charcot-Marie-Tooth , Sistema Nervoso Periférico , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Conexinas/genética , Camundongos Knockout , Mutação/genética , Sistema Nervoso Periférico/patologia , Fenótipo , Modelos Animais de Doenças , Proteína beta-1 de Junções Comunicantes
5.
Orphanet J Rare Dis ; 17(1): 286, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854306

RESUMO

BACKGROUND: Pathogenic variants in PEX-genes can affect peroxisome assembly and function and cause Zellweger spectrum disorders (ZSDs), characterized by variable phenotypes in terms of disease severity, age of onset and clinical presentations. So far, defects in at least 15 PEX-genes have been implicated in Mendelian diseases, but in some of the ultra-rare ZSD subtypes genotype-phenotype correlations and disease mechanisms remain elusive. METHODS: We report five families carrying biallelic variants in PEX13. The identified variants were initially evaluated by using a combination of computational approaches. Immunofluorescence and complementation studies on patient-derived fibroblasts were performed in two patients to investigate the cellular impact of the identified mutations. RESULTS: Three out of five families carried a recurrent p.Arg294Trp non-synonymous variant. Individuals affected with PEX13-related ZSD presented heterogeneous clinical features, including hypotonia, developmental regression, hearing/vision impairment, progressive spasticity and brain leukodystrophy. Computational predictions highlighted the involvement of the Arg294 residue in PEX13 homodimerization, and the analysis of blind docking predicted that the p.Arg294Trp variant alters the formation of dimers, impairing the stability of the PEX13/PEX14 translocation module. Studies on muscle tissues and patient-derived fibroblasts revealed biochemical alterations of mitochondrial function and identified mislocalized mitochondria and a reduced number of peroxisomes with abnormal PEX13 concentration. CONCLUSIONS: This study expands the phenotypic and mutational spectrum of PEX13-related ZSDs and also highlight a variety of disease mechanisms contributing to PEX13-related clinical phenotypes, including the emerging contribution of secondary mitochondrial dysfunction to the pathophysiology of ZSDs.


Assuntos
Síndrome de Zellweger , Estudos de Associação Genética , Humanos , Proteínas de Membrana/genética , Mutação/genética , Peroxissomos/genética , Peroxissomos/patologia , Síndrome de Zellweger/genética , Síndrome de Zellweger/patologia
6.
Mol Cell Neurosci ; 120: 103716, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276347

RESUMO

Pelizaeus-Merzbacher-like disease type 1 (PMLD1) is a hypomyelinating disorder arising in patients with mutations in GJC2, encoding Connexin47 (Cx47). PMLD1 causes nystagmus, cerebellar ataxia, spasticity and changes in CNS white matter detected by MRI. At least one mutation (p.I33M) yields a much milder phenotype, spastic paraplegia type 44 (SPG44). Cx47 contributes to gap junction communication channels between oligodendrocytes (OLs), the myelinating cells in the central nervous system (CNS), and between OLs and astrocytes. Prior studies in cell lines have shown that PMLD1 mutants such as p.P87S display defective protein trafficking, intracellular retention in the ER and loss-of-function. Here we show that when expressed in primary OLs, three PMLD1 associated mutants (p.P87S, p.Y269D and p.M283T) show ER retention of Cx47 and evidence of activation of the cellular stress (unfolded protein response, UPR) and apoptotic pathways. On the other hand, the milder SPG44 associated mutation p.I33M shows a wild-type-like subcellular distribution and no activation of the UPR or apoptotic pathways. These studies provide new insight into a potential element of toxic gain of function underlying the mechanism of PMLD1 that should help guide future therapeutic approaches.


Assuntos
Doenças Desmielinizantes , Doenças por Armazenamento dos Lisossomos , Doenças Neurodegenerativas , Doença de Pelizaeus-Merzbacher , Conexinas/genética , Conexinas/metabolismo , Doenças Desmielinizantes/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Mutação , Doenças Neurodegenerativas/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Resposta a Proteínas não Dobradas/genética
7.
Gene Ther ; 29(3-4): 127-137, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542455

RESUMO

X-linked Charcot-Marie-Tooth neuropathy (CMTX) is caused by mutations in the gene encoding Gap Junction Protein Beta-1 (GJB1)/Connexin32 (Cx32) in Schwann cells. Neurotrophin-3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulating axon regeneration and myelination. Improvements in these parameters have been shown previously in a CMT1 model, TremblerJ mouse, with NT-3 gene transfer therapy. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of 3-month-old Cx32 knockout (KO) mice. Measurable levels of NT-3 were found in the serum at 6-month post gene delivery. The outcome measures included functional, electrophysiological and histological assessments. At 9-months of age, NT-3 treated mice showed no functional decline with normalized compound muscle action potential amplitudes. Myelin thickness and nerve conduction velocity significantly improved compared with untreated cohort. A normalization toward age-matched wildtype histopathological parameters included increased number of Schmidt-Lanterman incisures, and muscle fiber diameter. Collectively, these findings suggest a translational application to CMTX1.


Assuntos
Axônios , Doença de Charcot-Marie-Tooth , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/terapia , Conexinas/genética , Conexinas/metabolismo , Terapia Genética , Humanos , Camundongos , Camundongos Knockout , Mutação , Regeneração Nervosa , Células de Schwann/metabolismo
8.
Glia ; 69(8): 1882-1896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33835612

RESUMO

Oligodendrocytes express two gap junction forming connexins, connexin 32 (Cx32) and Cx47; therefore, formation of heteromeric channels containing both Cx47 and Cx32 monomers might occur. Mutations in Cx47 cause both Pelizaeus-Merzbacher-like disease Type 1 (PMLD1) and hereditary spastic paraparesis Type 44 (SPG44) and heteromer formation between these mutants and Cx32 may contribute to the pathogenesis of these disorders. Here, we utilized electrophysiological and antibody-based techniques to examine this possibility. When cells expressing both Cx32 and Cx47 were paired with cells expressing either Cx32 or Cx47, properties were indistinguishable from those produced by cells expressing homotypic Cx32 or Cx47 channels. Similarly, pairing cells expressing both Cx32 and Cx47 with cells expressing Cx30 or Cx43 produced channels indistinguishable from heterotypic Cx32/Cx30 or Cx47/Cx43 channels, respectively. The same assessments were performed on cells expressing Cx32 and four mutant forms of Cx47 (p.I33M associated with SPG44 or p.P87S, p.Y269D or p.M283T associated with PMLD1). None of these mutants showed a functional effect on Cx32. Immunostained cells co-expressing Cx32WT (wild type) and Cx47WT showed a Pearson correlation coefficient close to zero, suggesting that any overlap was due to chance. p.Y269D showed a statistically significant negative correlation with Cx32, suggesting that Cx32 and this mutant overlap less than expected by chance. Co-immunoprecipitation of Cx32 with Cx47WT and mutants show only very low levels of co-immunoprecipitated protein. Overall, our data suggest that interactions between PMLD1 or SPG44 mutants and Cx32 gap junctions do not contribute to the pathogenesis of these disorders.


Assuntos
Conexinas , Paraplegia Espástica Hereditária , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Humanos , Oligodendroglia/metabolismo , Proteína beta-1 de Junções Comunicantes
9.
J Peripher Nerv Syst ; 26(2): 167-176, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33624350

RESUMO

The long-term sequelae of nerve injury as well as age-related neurodegeneration have been documented in numerous studies, however the role of Cx32 in these processes is not well understood. There is a need for better understanding of the molecular mechanisms that underlie long-term suboptimal nerve function and for approaches to prevent or improve it. In this communication we describe our studies using whole animal electrophysiology to examine the long-term sequelae of sciatic nerve crush in both WT and Cx32KO mice, a model of X-linked Charcot Marie Tooth disease, a subtype of inherited peripheral neuropathies. We present results from electrical nerve recordings done 14 to 27 days and 18 to 20 months after a unilateral sciatic nerve crush performed on 35 to 37-day old mice. Contrary to expectations, we find that whereas crush injury leads to a degradation of WT nerve function relative to uninjured nerves at 18 to 20 months, previously crushed Cx32KO nerves perform at the same level as their uninjured counterparts. Thus, 18 to 20 months after injury, WT nerves perform below the level of normal (uninjured) WT nerves in both motor and sensory nerve function. In contrast, measures of nerve function in Cx32KO mice are degraded for sensory axons but exhibit no additional dysfunction in motor axons. Early nerve injury has no negative electrophysiologic effect on the Cx32 KO motor nerves. Based on our prior demonstration that the transcriptomic profile of uninjured Cx32KO and injured WT sciatic nerves are very similar, the lack of an additional effect of crush on Cx32KO motor nerve parameters suggests that Cx32 knockout may implement a form of neuroprotection that limits the effects of subsequent injury.


Assuntos
Neuroproteção , Envelhecimento/genética , Animais , Doença de Charcot-Marie-Tooth/genética , Conexinas , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Regeneração Nervosa , Nervo Isquiático , Proteína beta-1 de Junções Comunicantes
10.
Neurosci Lett ; 695: 91-99, 2019 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28545922

RESUMO

Connexins are a family of integral membrane proteins most of which form gap junctions and many of which form hemichannels as well. Mutations in at least 9 of the 21 genes encoding human connexin proteins cause human diseases. Mutations in GJB1 (Cx32), expressed in both Schwann cells and oligodendrocytes, cause both a form of inherited peripheral neuropathy and a variety of CNS symptoms. Mutations in GJC2 (Cx47), expressed in oligodendrocytes cause three disorders: a severe early onset dysmyelinating disorder, Pelizaeus-Merzbacher-Like disease (PMLD1 or HLD2); hereditary spastic paraplegia (SPG44), which has a milder phenotype and later onset; and a subclinical leukodystrophy. The clinical phenotypes and genetics associated with each disorder will be reviewed, focusing on features which may provide clues to pathogenesis. In vitro and animal model data which may shed light on these phenotypes will then be discussed along with recent work which may impact on therapeutic approaches for these disorders.


Assuntos
Conexinas/biossíntese , Doenças Desmielinizantes/metabolismo , Neuroglia/metabolismo , Animais , Conexinas/genética , Conexinas/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Humanos , Mutação , Neuroglia/patologia , Células de Schwann/metabolismo , Células de Schwann/patologia
11.
Glia ; 66(12): 2589-2603, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30325069

RESUMO

Gap junctions (GJs) coupling oligodendrocytes to astrocytes and to other oligodendrocytes are formed mainly by connexin47 (Cx47) and a smaller portion by connexin32 (Cx32). Mutations in both connexins cause inherited demyelinating disorders, but their expression is also disrupted in multiple sclerosis (MS). To clarify whether the loss of either Cx47 or Cx32 could modify the outcome of inflammation and myelin loss, we induced experimental autoimmune encephalomyelitis (EAE) in fully backcrossed Cx32 knockout (KO) and Cx47KO mice and compared their outcome with wild type (WT, C57BI/6 N) mice. Cx47KO EAE mice developed the most severe phenotype assessed by clinical scores and behavioral testing, followed by Cx32KO and WT mice. Cx47KO more than Cx32KO EAE mice developed more microglial activation, myelin, and axonal loss than did WT mice. Oligodendrocyte apoptosis and precursor proliferation was also higher in Cx47KO than in Cx32KO or WT EAE mice. Similarly, blood-spinal cord barrier (BSCB) disruption and inflammatory infiltrates of macrophages, T- and B-cells were more severe in Cx47KO than either Cx32KO or WT EAE groups. Finally, expression profiling revealed that several proinflammatory cytokines were higher at the peak of inflammation in the Cx47KO mice and persisted at later stages of EAE in contrast to reduction of their levels in WT EAE mice. Thus, loss of oligodendrocyte GJs aggravates BSCB disruption and inflammatory myelin loss, likely due to dysregulation of proinflammatory cytokines. This mechanism may play an important role in MS brain with reduced connexin expression, as well as in patients with inherited mutations in oligodendrocyte connexins and secondary inflammation.


Assuntos
Citocinas/metabolismo , Encefalomielite Autoimune Experimental/patologia , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica/fisiologia , Força da Mão/fisiologia , Oligodendroglia/metabolismo , Animais , Apoptose/genética , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células/genética , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/fisiopatologia , Adjuvante de Freund/toxicidade , Junções Comunicantes/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Glicoproteína Mielina-Oligodendrócito/toxicidade , Oligodendroglia/patologia , Fragmentos de Peptídeos/toxicidade , Proteína beta-1 de Junções Comunicantes
12.
BMC Cell Biol ; 19(1): 22, 2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30268116

RESUMO

BACKGROUND: The gap junction protein, Connexin32 (Cx32), is expressed in various tissues including liver, exocrine pancreas, gastrointestinal epithelium, and the glia of the central and peripheral nervous system. Gap junction-mediated cell-cell communication and channel-independent processes of Cx32 contribute to the regulation of physiological and cellular activities such as glial differentiation, survival, and proliferation; maintenance of the hepatic epithelium; and axonal myelination. Mutations in Cx32 cause X-linked Charcot-Marie-Tooth disease (CMT1X), an inherited peripheral neuropathy. Several CMT1X causing mutations are found in the cytoplasmic domains of Cx32, a region implicated in the regulation of gap junction assembly, turnover and function. Here we investigate the roles of acetylation and ubiquitination in the C-terminus on Cx32 protein function. Cx32 protein turnover, ubiquitination, and response to deacetylase inhibitors were determined for wild-type and C-terminus lysine mutants using transiently transfected Neuro2A (N2a) cells. RESULTS: We report here that Cx32 is acetylated in transfected N2a cells and that inhibition of the histone deacetylase, HDAC6, results in an accumulation of Cx32. We identified five lysine acetylation targets in the C-terminus. Mutational analysis demonstrates that these lysines are involved in the regulation of Cx32 ubiquitination and turnover. While these lysines are not required for functional Cx32 mediated cell-cell communication, BrdU incorporation studies demonstrate that their relative acetylation state plays a channel-independent role in Cx32-mediated control of cell proliferation. CONCLUSION: Taken together these results highlight the role of post translational modifications and lysines in the C-terminal tail of Cx32 in the fine-tuning of Cx32 protein stability and channel-independent functions.


Assuntos
Conexinas/metabolismo , Lisina/metabolismo , Acetilação , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Estabilidade Proteica/efeitos dos fármacos , Ratos , Ubiquitinação/efeitos dos fármacos , Proteína beta-1 de Junções Comunicantes
13.
Am J Physiol Cell Physiol ; 315(5): C623-C635, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30044662

RESUMO

The connexins are members of a family of integral membrane proteins that form gap junction channels between apposed cells and/or hemichannels across the plasma membranes. The importance of the arginine at position 76 (Arg76) in the structure and/or function of connexin 46 (Cx46) is highlighted by its conservation across the entire connexin family and the occurrence of pathogenic mutations at this (or the corresponding homologous) residue in a number of human diseases. Two mutations at Arg76 in Cx46 are associated with cataracts in humans, highlighting the importance of this residue. We examined the expression levels and macroscopic and single-channel properties of human Cx46 and compared them with those for two pathogenic mutants, namely R76H and R76G. To gain further insight into the role of charge at this position, we generated two additional nonnaturally occurring mutants, R76K (charge conserving) and R76E (charge inverting). We found that, when expressed exogenously in Neuro2a cells, all four mutants formed membrane hemichannels, inducing membrane permeability at levels comparable to those recorded in cells expressing the wild-type Cx46. In contrast, the number of gap-junction plaques and the magnitude of junctional coupling were reduced by all four mutations. To gain further insight into the role of Arg76 in the function of Cx46, we performed homology modeling of Cx46 and in silico mutagenesis of Arg76 to Gly, His, or Glu. Our studies suggest that the loss of interprotomeric interactions has a significant effect on the extracellular domain conformation and dynamics, thus affecting the hemichannel docking required for formation of cell-cell channels.


Assuntos
Catarata/genética , Permeabilidade da Membrana Celular/genética , Conexinas/genética , Junções Comunicantes/genética , Arginina/genética , Catarata/patologia , Simulação por Computador , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Canais Iônicos/genética , Mutação/genética
14.
J Vis Exp ; (135)2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29863670

RESUMO

The efficient and robust isolation and culture of primary oligodendrocytes (OLs) is a valuable tool for the in vitro study of the development of oligodendroglia as well as the biology of demyelinating diseases such as multiple sclerosis and Pelizaeus-Merzbacher-like disease (PMLD). Here, we present a simple and efficient selection method for the immunomagnetic isolation of stage three O4+ preoligodendrocytes cells from neonatal mice pups. Since immature OL constitute more than 80% of the rodent-brain white matter at postnatal day 7 (P7) this isolation method not only ensures high cellular yield, but also the specific isolation of OLs already committed to the oligodendroglial lineage, decreasing the possibility of isolating contaminating cells such as astrocytes and other cells from the mouse brain. This method is a modification of the techniques reported previously, and provides oligodendrocyte preparation purity above 80% in about 4 h.


Assuntos
Separação Imunomagnética/métodos , Oligodendroglia/metabolismo , Animais , Camundongos
15.
BMJ Case Rep ; 20182018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507018

RESUMO

Peripheral neurological complications of lymphomas are rare and much less frequent than central complications. Nonetheless, on occasion, systemic non-Hodgkin's lymphoma may directly infiltrate the peripheral nervous system at various levels. This report describes a man with non-Hodgkin's lymphoma and leptomeningeal disease who developed progressive areflexic quadraparesis. Initial electromyography (EMG) was consistent with a polyradiculopathy and a repeat EMG performed 1 month later for worsening symptoms showed evidence of demyelination. The patient expired due to systemic complications of his illness. Autopsy of the sural nerve showed moderately severe distal sensory axonal loss, direct infiltration of the brachial plexus by malignant lymphocytes and demyelination in brachial and lumbar plexus, most prominent in areas of neoplastic infiltration. Based on this patient's course and pathology, we suggest that widespread demyelination may accompany neurolymphomatosis and the clinical presentation may be indistinguishable from an acute demyelinating neuropathy.


Assuntos
Doenças Desmielinizantes/etiologia , Linfoma/complicações , Doença de Marek/complicações , Animais , Doenças Desmielinizantes/patologia , Eletromiografia , Evolução Fatal , Humanos , Linfoma/patologia , Masculino , Doença de Marek/patologia , Nervo Sural/patologia
16.
Sci Rep ; 7: 40166, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071741

RESUMO

CMT1X, an X-linked inherited neuropathy, is caused by mutations in GJB1, which codes for Cx32, a gap junction protein expressed by Schwann cells and oligodendrocytes. Many GJB1 mutations cause central nervous system (CNS) abnormality in males, including stable subclinical signs and, less often, short-duration episodes characterized by motor difficulties and altered consciousness. However, some mutations have no apparent CNS effects. What distinguishes mutations with and without CNS manifestations has been unclear. Here we studied a total of 14 Cx32 mutations, 10 of which are associated with florid episodic CNS clinical syndromes in addition to peripheral neuropathy. The other 4 mutations exhibit neuropathy without clinical or subclinical CNS abnormalities. These "PNS-only" mutations (Y151C, V181M, R183C and L239I) form gap junction plaques and produce levels of junctional coupling similar to those for wild-type Cx32. In contrast, mutants with CNS manifestations (F51L, E102del, V139M, R142Q, R142W, R164W T55I, R164Q and C168Y) either form no morphological gap junction plaques or, if they do, produce little or no detectable junctional coupling. Thus, PNS and CNS abnormalities may involve different aspects of connexin function.


Assuntos
Comunicação Celular , Doença de Charcot-Marie-Tooth/patologia , Conexinas/genética , Proteínas Mutantes/genética , Neurônios/patologia , Neurônios/fisiologia , Linhagem Celular , Sistema Nervoso Central/patologia , Conexinas/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Técnicas de Patch-Clamp , Sistema Nervoso Periférico/patologia , Transfecção , Proteína beta-1 de Junções Comunicantes
17.
Acta Neuropathol Commun ; 4(1): 95, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27585976

RESUMO

X-linked Charcot-Marie-Tooth disease (CMT1X) is a common form of inherited neuropathy resulting from different mutations affecting the gap junction (GJ) protein connexin32 (Cx32). A subset of CMT1X patients may additionally present with acute fulminant CNS dysfunction, typically triggered by conditions of systemic inflammation and metabolic stress. To clarify the underlying mechanisms of CNS phenotypes in CMT1X we studied a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) injection to compare wild type (WT), connexin32 (Cx32) knockout (KO), and KO T55I mice expressing the T55I Cx32 mutation associated with CNS phenotypes. Following a single intraperitoneal LPS or saline (controls) injection at the age of 40-60 days systemic inflammatory response was documented by elevated TNF-α and IL-6 levels in peripheral blood and mice were evaluated 1 week after injection. Behavioral analysis showed graded impairment of motor performance in LPS treated mice, worse in KO T55I than in Cx32 KO and in Cx32 KO worse than WT. Iba1 immunostaining revealed widespread inflammation in LPS treated mice with diffusely activated microglia throughout the CNS. Immunostaining for the remaining major oligodendrocyte connexin Cx47 and for its astrocytic partner Cx43 revealed widely reduced expression of Cx43 and loss of Cx47 GJs in oligodendrocytes. Real-time PCR and immunoblot analysis indicated primarily a down regulation of Cx43 expression with secondary loss of Cx47 membrane localization. Inflammatory changes and connexin alterations were most severe in the KO T55I group. To examine why the presence of the T55I mutant exacerbates pathology even more than in Cx32 KO mice, we analyzed the expression of ER-stress markers BiP, Fas and CHOP by immunostaining, immunoblot and Real-time PCR. All markers were increased in LPS treated KO T55I mice more than in other genotypes. In conclusion, LPS induced neuroinflammation causes disruption of the main astrocyte-oligodendrocyte GJs, which may contribute to the increased sensitivity of Cx32 KO mice to LPS and of patients with CMT1X to various stressors. Moreover the presence of an intracellularly retained, misfolded CMT1X mutant such as T55I induces ER stress under inflammatory conditions, further exacerbating oligodendrocyte dysfunction and pathological changes in the CNS.


Assuntos
Doença de Charcot-Marie-Tooth/imunologia , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/imunologia , Junções Comunicantes/imunologia , Inflamação/imunologia , Oligodendroglia/imunologia , Animais , Astrócitos/imunologia , Astrócitos/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/patologia , Escherichia coli , Junções Comunicantes/patologia , Inflamação/patologia , Interleucina-6/sangue , Lipopolissacarídeos , Masculino , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Neuroimunomodulação/fisiologia , Oligodendroglia/patologia , Fator de Necrose Tumoral alfa/sangue , Proteína beta-1 de Junções Comunicantes
18.
PLoS One ; 10(6): e0131259, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098958

RESUMO

Detecting neurodevelopµental disorders of cognition at the earliest possible stages could assist in understanding them mechanistically and ultimately in treating them. Finding early physiological predictors that could be visualized with functional neuroimaging would represent an important advance in this regard. We hypothesized that one potential source of physiological predictors is the spontaneous local network activity prominent during specific periods in development. To test this we used calcium imaging in brain slices and analyzed variations in the frequency and intensity of this early activity in one area, the entorhinal cortex (EC), in order to correlate early activity with level of cognitive function later in life. We focused on EC because of its known role in different types of cognitive processes and because it is an area where spontaneous activity is prominent during early postnatal development in rodent models of cortical development. Using rat strains (Long-Evans, Wistar, Sprague-Dawley and Brattleboro) known to differ in cognitive performance in adulthood we asked whether neonatal animals exhibit corresponding strain-related differences in EC spontaneous activity. Our results show significant differences in this activity between strains: compared to a high cognitive-performing strain, we consistently found an increase in frequency and decrease in intensity in neonates from three lower performing strains. Activity was most different in one strain considered a model of schizophrenia-like psychopathology. While we cannot necessarily infer a causal relationship between early activity and adult cognition our findings suggest that the pattern of spontaneous activity in development could be an early predictor of a developmental trajectory advancing toward sub-optimal cognitive performance in adulthood. Our results further suggest that the strength of dopaminergic signaling, by setting the balance between excitation and inhibition, is a potential underlying mechanism that could explain the observed differences in early spontaneous activity patterns.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Cognição/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Fatores Etários , Animais , Animais Recém-Nascidos/anatomia & histologia , Animais Recém-Nascidos/crescimento & desenvolvimento , Córtex Entorrinal/anatomia & histologia , Córtex Entorrinal/crescimento & desenvolvimento , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Ratos , Ratos Brattleboro/crescimento & desenvolvimento , Ratos Brattleboro/fisiologia , Ratos Long-Evans/crescimento & desenvolvimento , Ratos Long-Evans/fisiologia , Ratos Sprague-Dawley/crescimento & desenvolvimento , Ratos Sprague-Dawley/fisiologia , Ratos Wistar/crescimento & desenvolvimento , Ratos Wistar/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D5/fisiologia , Receptores de GABA-A/fisiologia , Especificidade da Espécie
19.
Exp Neurol ; 263: 339-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447941

RESUMO

X-linked Charcot-Marie-Tooth disease (CMT1X) is an inherited peripheral neuropathy caused by mutations in GJB1, the human gene for Connexin32 (Cx32). This present study uses Ilumina Ref8-v2 BeadArray to examine the expression profiles of injured and uninjured sciatic nerves at 5, 7, and 14 days post-crush injury (dpi) from Wild Type (WT) and Cx32-knockout (Cx32KO) mice to identify the genes and signaling pathways that are dysregulated in the absence of Schwann cell Cx32. Given the assumption that loss of Schwann cell Cx32 disrupts the regeneration and maintenance of myelinated nerve leading to a demyelinating neuropathy in CMT1X, we initially hypothesized that nerve crush injury would result in significant increases in differential gene expression in Cx32KO mice relative to WT nerves. However, microarray analysis revealed a striking collapse in the number of differentially expressed genes at 5 and 7 dpi in Cx32KO nerves relative to WT, while uninjured and 14 dpi time points showed large numbers of differentially regulated genes. Further comparisons within each genotype showed limited changes in Cx32KO gene expression following crush injury when compared to uninjured Cx32KO nerves. By contrast, WT nerves exhibited robust changes in gene expression at 5 and 7 dpi with no significant differences in gene expression by 14dpi relative to uninjured WT nerve samples. Taken together, these data suggest that the gene expression profile in uninjured Cx32KO sciatic nerve strongly resembles that of a WT nerve following injury and that loss of Schwann cell Cx32 leads to a basal state of gene expression similar to that of an injured WT nerve. These findings support a role for Cx32 in non-myelinating and regenerating populations of Schwann cells in normal axonal maintenance in re-myelination, and regeneration of peripheral nerve following injury. Disruption of Schwann cell-axonal communication in CMT1X may cause dysregulation of signaling pathways that are essential for the maintenance of intact myelinated peripheral nerves and to establish the necessary conditions for successful regeneration and remyelination following nerve injury.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Conexinas/genética , Regeneração Nervosa/genética , Transcriptoma , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compressão Nervosa , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Células de Schwann/metabolismo , Proteína beta-1 de Junções Comunicantes
20.
Cell Tissue Res ; 360(3): 659-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25370202

RESUMO

Charcot-Marie-Tooth disease (CMT) is a group of inherited diseases characterized by exclusive or predominant involvement of the peripheral nervous system. Mutations in GJB1, the gene encoding Connexin 32 (Cx32), a gap-junction channel forming protein, cause the most common X-linked form of CMT, CMT1X. Cx32 is expressed in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems, respectively. Thus, patients with CMT1X have both central and peripheral nervous system manifestations. Study of the genetics of CMT1X and the phenotypes of patients with this disorder suggest that the peripheral manifestations of CMT1X are likely to be due to loss of function, while in the CNS gain of function may contribute. Mice with targeted ablation of Gjb1 develop a peripheral neuropathy similar to that seen in patients with CMT1X, supporting loss of function as a mechanism for the peripheral manifestations of this disorder. Possible roles for Cx32 include the establishment of a reflexive gap junction pathway in the peripheral and central nervous system and of a panglial syncitium in the central nervous system.


Assuntos
Sistema Nervoso Central/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Conexinas/metabolismo , Genes Ligados ao Cromossomo X , Sistema Nervoso Periférico/patologia , Animais , Modelos Animais de Doenças , Humanos , Proteína beta-1 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...