Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 5): 127209, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804896

RESUMO

Osteogenic properties of phenolated alginate (1.2 %) hydrogel containing collagen (0.5 %)/nano-hydroxyapatite (1 %) were studied on human mesenchymal stem cells in vitro. The phenolation rate and physical properties of the hydrogel were assessed using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), swelling ratio, gelation time, mechanical assay, and degradation rate. The viability of encapsulated cells was monitored on days 7, 14, and 21 using an MTT assay. Osteoblast differentiation was studied using western blotting, and real-time PCR. Using PCR array analysis, the role of the Wnt signaling pathway was also investigated. Data showed that the combination of alginate/collagen/nanohydroxyapatite yielded proper mechanical features. The addition of nanohydroxyapatite, and collagen reduced degradation, swelling rate coincided with increased stiffness. Elasticity and pore size were also diminished. NMR and FTIR revealed suitable incorporation of collagen and nanohydroxyapatite in the structure of alginate. Real-time PCR analysis and western blotting indicated the expression of osteoblast-related genes such as Runx2 and osteocalcin. PCR array revealed the induction of numerous genes related to Wnt signaling pathways during the maturation of human stem cells toward osteoblast-like cells. In vivo data indicated that transplantation of phenolated alginate/collagen/nanohydroxyapatite hydrogel led to enhanced de novo bone formation in rats with critical-sized calvarial defects. Phenolated alginate hydrogel can promote the osteogenic capacity of human amniotic membrane mesenchymal stem cells in the presence of nanohydroxyapatite and collagen via engaging the Wnt signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Ratos , Animais , Hidrogéis/química , Via de Sinalização Wnt , Alginatos/química , Colágeno/metabolismo , Diferenciação Celular , Células Cultivadas , Alicerces Teciduais/química
2.
Int J Biol Macromol ; 243: 125232, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302628

RESUMO

During the past decades, the advent of different microneedle patch (MNPs) systems paves the way for the targeted and efficient delivery of several growth factors into the injured sites. MNPs consist of several micro-sized (25-1500 µm) needle rows for painless delivery of incorporated therapeutics and increase of regenerative outcomes. Recent data have indicated the multifunctional potential of varied MNP types for clinical applications. Advances in the application of materials and fabrication processes enable researchers and clinicians to apply several MNP types for different purposes such as inflammatory conditions, ischemic disease, metabolic disorders, vaccination, etc. Exosomes (Exos) are one of the most interesting biological bioshuttles that participate in cell-to-cell paracrine interaction with the transfer of signaling biomolecules. These nano-sized particles, ranging from 50 to 150 nm, can exploit several mechanisms to enter the target cells and deliver their cargo into the cytosol. In recent years, both intact and engineered Exos have been increasingly used to accelerate the healing process and restore the function of injured organs. Considering the numerous benefits provided by MNPs, it is logical to hypothesize that the development of MNPs loaded with Exos provides an efficient therapeutic platform for the alleviation of several pathologies. In this review article, the authors collected recent advances in the application of MNP-loaded Exos for therapeutic purposes.


Assuntos
Exossomos , Exossomos/metabolismo , Cicatrização , Sistemas de Liberação de Medicamentos , Agulhas , Vacinação
3.
Stem Cell Res Ther ; 14(1): 90, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061717

RESUMO

Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.


Assuntos
Doenças Musculares , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Músculo Esquelético/lesões , Doenças Musculares/terapia , Hidrogéis , Imunomodulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...