Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(9): 4872-4888, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412296

RESUMO

microRNAs (miRNAs) regulate nearly all physiological processes but our understanding of exactly how they function remains incomplete, particularly in the context of viral infections. Here, we adapt a biochemical method (CLEAR-CLIP) and analysis pipeline to identify targets of miRNAs in lung cells infected with Respiratory syncytial virus (RSV). We show that RSV binds directly to miR-26 and miR-27 through seed pairing and demonstrate that these miRNAs target distinct gene networks associated with cell cycle and metabolism (miR-27) and antiviral immunity (miR-26). Many of the targets are de-repressed upon infection and we show that the miR-27 targets most sensitive to miRNA inhibition are those associated with cell cycle. Finally, we demonstrate that high confidence chimeras map to long noncoding RNAs (lncRNAs) and pseudogenes in transcriptional regulatory regions. We validate that a proportion of miR-27 and Argonaute 2 (AGO2) is nuclear and identify a long non-coding RNA (lncRNA) as a miR-27 target that is linked to transcriptional regulation of nearby genes. This work expands the target networks of miR-26 and miR-27 to include direct interactions with RSV and lncRNAs and implicate these miRNAs in regulation of key genes that impact the viral life cycle associated with cell cycle, metabolism, and antiviral immunity.


Assuntos
Proteínas Argonautas , Ciclo Celular , MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ciclo Celular/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Redes Reguladoras de Genes , Regulação da Expressão Gênica , Linhagem Celular , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia
2.
Cell Host Microbe ; 32(1): 93-105.e6, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38103543

RESUMO

Cross-kingdom small RNA trafficking between hosts and microbes modulates gene expression in the interacting partners during infection. However, whether other RNAs are also transferred is unclear. Here, we discover that host plant Arabidopsis thaliana delivers mRNAs via extracellular vesicles (EVs) into the fungal pathogen Botrytis cinerea. A fluorescent RNA aptamer reporter Broccoli system reveals host mRNAs in EVs and recipient fungal cells. Using translating ribosome affinity purification profiling and polysome analysis, we observe that delivered host mRNAs are translated in fungal cells. Ectopic expression of two transferred host mRNAs in B. cinerea shows that their proteins are detrimental to infection. Arabidopsis knockout mutants of the genes corresponding to these transferred mRNAs are more susceptible. Thus, plants have a strategy to reduce infection by transporting mRNAs into fungal cells. mRNAs transferred from plants to pathogenic fungi are translated to compromise infection, providing knowledge that helps combat crop diseases.


Assuntos
Arabidopsis , Vesículas Extracelulares , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA , Arabidopsis/genética , Arabidopsis/microbiologia , Plantas/genética , Doenças das Plantas/microbiologia
3.
Nat Commun ; 14(1): 7776, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012132

RESUMO

Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.


Assuntos
Nematospiroides dubius , Trichostrongyloidea , Camundongos , Animais , Interações Hospedeiro-Parasita/fisiologia , Nematospiroides dubius/genética
4.
RNA ; 30(1): 26-36, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37879863

RESUMO

Increasing evidence suggests mammalian Argonaute (Ago) proteins partition into distinct complexes within cells, but there is still little biochemical or functional understanding of the miRNAs differentially associated with these complexes. In naïve T cells, Ago2 is found almost exclusively in low molecular weight (LMW) complexes which are associated with miRNAs but not their target mRNAs. Upon T-cell activation, a proportion of these Ago2 complexes move into a newly formed high molecular weight (HMW) RNA-induced silencing complex (RISC), which is characterized by the presence of the GW182 protein that mediates translational repression. Here, we demonstrate distinct partitioning of miRNAs and isomiRs in LMW versus HMW RISCs upon antigen-mediated activation of CD8+ T cells. We identify miR-7 as highly enriched in HMW RISC and demonstrate that miR-7 inhibition leads to increased production of IL-2 and up-regulation of the IL-2 receptor, the transferrin receptor, CD71 and the amino acid transporter, CD98. Our data support a model where recruitment of miR-7 to HMW RISC restrains IL-2 signaling and the metabolic processes regulated by IL-2.


Assuntos
MicroRNAs , Complexo de Inativação Induzido por RNA , Animais , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Peso Molecular , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/metabolismo
5.
Mol Ecol ; 32(13): 3605-3623, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000122

RESUMO

Early lineage diversification is central to understand what mutational events drive species divergence. Particularly, gene misregulation in interspecific hybrids can inform about what genes and pathways underlie hybrid dysfunction. In Drosophila hybrids, how regulatory evolution impacts different reproductive tissues remains understudied. Here, we generate a new genome assembly and annotation in Drosophila willistoni and analyse the patterns of transcriptome divergence between two allopatrically evolved D. willistoni subspecies, their male sterile and female fertile hybrid progeny across testis, male accessory gland, and ovary. Patterns of transcriptome divergence and modes of regulatory evolution were tissue-specific. Despite no indication for cell-type differences in hybrid testis, this tissue exhibited the largest magnitude of expression differentiation between subspecies and between parentals and hybrids. No evidence for anomalous dosage compensation in hybrid male tissues was detected nor was a differential role for the neo- and the ancestral arms of the D. willistoni X chromosome. Compared to the autosomes, the X chromosome appeared enriched for transgressively expressed genes in testis despite being the least differentiated in expression between subspecies. Evidence for fine genome clustering of transgressively expressed genes suggests a role of chromatin structure on hybrid gene misregulation. Lastly, transgressively expressed genes in the testis of the sterile male progeny were enriched for GO terms not typically associated with sperm function, instead hinting at anomalous development of the reproductive tissue. Our thorough tissue-level portrait of transcriptome differentiation between recently diverged D. willistoni subspecies and their hybrids provides a more nuanced view of early regulatory changes during speciation.


Assuntos
Drosophila , Sêmen , Animais , Masculino , Feminino , Drosophila/genética , Cromossomo X , Diferenciação Celular , Transcriptoma/genética , Hibridização Genética
6.
Microb Genom ; 8(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36239595

RESUMO

The ability to respond to injury is essential for the survival of an organism and involves analogous mechanisms in animals and plants. Such mechanisms integrate coordinated genetic and metabolic reprogramming events requiring regulation by small RNAs for adequate healing of the wounded area. We have previously reported that the response to injury of the filamentous fungus Trichoderma atroviride involves molecular mechanisms closely resembling those of plants and animals that lead to the formation of new hyphae (regeneration) and the development of asexual reproduction structures (conidiophores). However, the involvement of microRNAs in this process has not been investigated in fungi. In this work, we explore the participation of microRNA-like RNAs (milRNAs) molecules by sequencing messenger and small RNAs during the injury response of the WT strain and RNAi mutants. We found that Dcr2 appears to play an important role in hyphal regeneration and is required to produce the majority of sRNAs in T. atroviride. We also determined that the three main milRNAs produced via Dcr2 are induced during the damage-triggered developmental process. Importantly, elimination of a single milRNA phenocopied the main defects observed in the dcr2 mutant. Our results demonstrate the essential role of milRNAs in hyphal regeneration and asexual development by post-transcriptionally regulating cellular signalling processes involving phosphorylation events. These observations allow us to conclude that fungi, like plants and animals, in response to damage activate fine-tuning regulatory mechanisms.


Assuntos
Hypocreales , MicroRNAs , Animais , Regulação Fúngica da Expressão Gênica , Hifas/genética , Hypocreales/genética , Hypocreales/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regeneração/genética
7.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314727

RESUMO

After fertilization, zygotic genome activation results in a transcriptionally competent embryo. Hybrid transcriptome experiments in Arabidopsis have concluded that the maternal and paternal genomes make equal contributions to zygotes and embryos, yet embryo defective (emb) mutants in the Columbia (Col) ecotype display early maternal effects. Here, we show that hybridization of Col with Landsberg erecta (Ler) or Cape Verde Islands (Cvi) ecotypes decreases the maternal effects of emb mutants. Reanalysis of Col/Ler and Col/Cvi transcriptomes confirmed equal parental contributions in Col/Cvi early embryos. By contrast, thousands of genes in Col/Ler zygotes and one-cell embryos were biallelic in one cross and monoallelic in the reciprocal cross, with analysis of intron reads pointing to active transcription as responsible for this parent-of-origin bias. Our analysis shows that, contrary to previous conclusions, the maternal and paternal genomes in Col/Ler zygotes are activated in an asymmetric manner. The decrease in maternal effects in hybrid embryos compared with those in isogenic Col along with differences in genome activation between Col/Cvi and Col/Ler suggest that neither of these hybrids accurately reflects the general trends of parent-of-origin regulation in Arabidopsis embryogenesis.


Assuntos
Arabidopsis , Arabidopsis/genética , Sementes/genética , Genes de Plantas , Genoma de Planta/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas/genética
8.
J Mol Evol ; 90(6): 438-451, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156124

RESUMO

Codon usage is the outcome of different evolutionary processes and can inform us about the conditions in which organisms live and evolve. Here, we present R_ENC', which is an improvement to the original S index developed by dos Reis et al. (2004). Our index is less sensitive to G+C content, which greatly affects synonymous codon usage in prokaryotes, making it better suited to detect selection acting on codon usage. We used R_ENC' to estimate the extent of selected codon usage bias in 1800 genomes representing 26 prokaryotic phyla. We found that Gammaproteobacteria, Betaproteobacteria, Actinobacteria, and Firmicutes are the phyla/subphyla showing more genomes with selected codon usage bias. In particular, we found that several lineages within Gammaproteobacteria and Firmicutes show a similar set of functional terms enriched in genes under selected codon usage bias, indicating convergent evolution. We also show that selected codon usage bias tends to evolve in genes coding for the translation machinery before other functional GO terms. Finally, we discuss the possibility to use R_ENC' to predict whether lineages evolved in copiotrophic or oligotrophic environments.


Assuntos
Bactérias , Uso do Códon , Uso do Códon/genética , Códon/genética , Composição de Bases , Bactérias/genética , Seleção Genética , Evolução Molecular
9.
Proc Biol Sci ; 289(1967): 20212183, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35042416

RESUMO

How chromosome gene organization and gene content evolve among distantly related and structurally malleable genomes remains unresolved. This is particularly the case when considering different insect orders. We have compared the highly contiguous genome assemblies of the lepidopteran Danaus plexippus and the dipteran Drosophila melanogaster, which shared a common ancestor around 290 Ma. The gene content of 23 out of 30 D. plexippus chromosomes was significantly associated with one or two of the six chromosomal elements of the Drosophila genome, denoting common ancestry. Despite the phylogenetic distance, 9.6% of the 1-to-1 orthologues still reside within the same ancestral genome neighbourhood. Furthermore, the comparison D. plexippus-Bombyx mori indicated that the rates of chromosome repatterning are lower in Lepidoptera than in Diptera, although still within the same order of magnitude. Concordantly, 14 developmental gene clusters showed a higher tendency to retain full or partial clustering in D. plexippus, further supporting that the physical association between the SuperHox and NK clusters existed in the ancestral bilaterian. Our results illuminate the scope and limits of the evolution of the gene organization and content of the ancestral chromosomes to the Lepidoptera and Diptera while helping reconstruct portions of the genome in their most recent common ancestor.


Assuntos
Borboletas , Dípteros , Lepidópteros , Animais , Borboletas/genética , Cromossomos/genética , Dípteros/genética , Drosophila melanogaster/genética , Evolução Molecular , Filogenia , Distribuição Aleatória
10.
Commun Biol ; 4(1): 791, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172835

RESUMO

A detailed knowledge of gene function in the monarch butterfly is still lacking. Here we generate a genome assembly from a Mexican nonmigratory population and used RNA-seq data from 14 biological samples for gene annotation and to construct an atlas portraying the breadth of gene expression during most of the monarch life cycle. Two thirds of the genes show expression changes, with long noncoding RNAs being particularly finely regulated during adulthood, and male-biased expression being four times more common than female-biased. The two portions of the monarch heterochromosome Z, one ancestral to the Lepidoptera and the other resulting from a chromosomal fusion, display distinct association with sex-biased expression, reflecting sample-dependent incompleteness or absence of dosage compensation in the ancestral but not the novel portion of the Z. This study presents extended genomic and transcriptomic resources that will facilitate a better understanding of the monarch's adaptation to a changing environment.


Assuntos
Borboletas/genética , Mecanismo Genético de Compensação de Dose , Transcriptoma , Animais , Feminino , Genoma , Masculino , RNA Longo não Codificante/fisiologia
11.
ISME J ; 14(7): 1743-1754, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32269378

RESUMO

Rhizopus microsporus is an early-diverging fungal species with importance in ecology, agriculture, food production, and public health. Pathogenic strains of R. microsporus harbor an intracellular bacterial symbiont, Mycetohabitans (formerly named Burkholderia). This vertically transmitted bacterial symbiont is responsible for the production of toxins crucial to the pathogenicity of Rhizopus and remarkably also for fungal reproduction. Here we show that R. microsporus can live not only in symbiosis with bacteria but also with two viral members of the genus Narnavirus. Our experiments revealed that both viruses replicated similarly in the growth conditions we tested. Viral copies were affected by the developmental stage of the fungus, the substrate, and the presence or absence of Mycetohabitans. Absolute quantification of narnaviruses in isolated asexual sporangiospores and sexual zygospores indicates their vertical transmission. By curing R. microsporus of its viral and bacterial symbionts and reinfecting bacteria to reestablish symbiosis, we demonstrate that these viruses affect fungal biology. Narnaviruses decrease asexual reproduction, but together with Mycetohabitans, are required for sexual reproductive success. This fungal-bacterial-viral system represents an outstanding model to investigate three-way microbial symbioses and their evolution.


Assuntos
Burkholderia , Simbiose , Rhizopus , Esporos Fúngicos
12.
EMBO J ; 39(6): e102513, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32073171

RESUMO

Various species of non-coding RNAs (ncRNAs) are enriched in specific subcellular compartments, but the mechanisms orchestrating their localization and their local functions remain largely unknown. We investigated both aspects using the elongating retinal ganglion cell axon and its tip, the growth cone, as models. We reveal that specific endogenous precursor microRNAs (pre-miRNAs) are actively trafficked to distal axons by hitchhiking primarily on late endosomes/lysosomes. Upon exposure to the axon guidance cue semaphorin 3A (Sema3A), pre-miRNAs are processed specifically within axons into newly generated miRNAs, one of which, in turn, silences the basal translation of tubulin beta 3 class III (TUBB3), but not amyloid beta precursor protein (APP). At the organismal level, these mature miRNAs are required for growth cone steering and a fully functional visual system. Overall, our results uncover a novel mode of ncRNA transport from one cytosolic compartment to another within polarized cells. They also reveal that newly generated miRNAs are critical components of a ncRNA-based signaling pathway that transduces environmental signals into the structural remodeling of subcellular compartments.


Assuntos
MicroRNAs/genética , RNA não Traduzido/genética , Transdução de Sinais , Animais , Axônios/fisiologia , Transporte Biológico , Endossomos/metabolismo , Feminino , Cones de Crescimento/fisiologia , Camundongos Endogâmicos C57BL , Precursores de RNA/genética , Células Ganglionares da Retina/fisiologia , Xenopus laevis
13.
Nucleic Acids Res ; 48(4): e21, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31879784

RESUMO

Many organisms exchange small RNAs (sRNAs) during their interactions, that can target or bolster defense strategies in host-pathogen systems. Current sRNA-Seq technology can determine the sRNAs present in any symbiotic system, but there are very few bioinformatic tools available to interpret the results. We show that one of the biggest challenges comes from sequences that map equally well to the genomes of both interacting organisms. This arises due to the small size of the sRNAs compared to large genomes, and because a large portion of sequenced sRNAs come from genomic regions that encode highly conserved miRNAs, rRNAs or tRNAs. Here, we present strategies to disentangle sRNA-Seq data from samples of communicating organisms, developed using diverse plant and animal species that are known to receive or exchange RNA with their symbionts. We show that sequence assembly, both de novo and genome-guided, can be used for these sRNA-Seq data, greatly reducing the ambiguity of mapping reads. Even confidently mapped sequences can be misleading, so we further demonstrate the use of differential expression strategies to determine true parasite-derived sRNAs within host cells. We validate our methods on new experiments designed to probe the nature of the extracellular vesicle sRNAs from the parasitic nematode Heligmosomoides bakeri that get into mouse intestinal epithelial cells.


Assuntos
Interações Hospedeiro-Patógeno/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Simbiose/genética , Animais , Arabidopsis/genética , Arabidopsis/microbiologia , Botrytis/genética , Biologia Computacional , Genoma Bacteriano/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , MicroRNAs/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Análise de Sequência de RNA
14.
Nucleic Acids Res ; 47(7): 3594-3606, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30820541

RESUMO

Extracellular RNA has been proposed to mediate communication between cells and organisms however relatively little is understood regarding how specific sequences are selected for export. Here, we describe a specific Argonaute protein (exWAGO) that is secreted in extracellular vesicles (EVs) released by the gastrointestinal nematode Heligmosomoides bakeri, at multiple copies per EV. Phylogenetic and gene expression analyses demonstrate exWAGO orthologues are highly conserved and abundantly expressed in related parasites but highly diverged in free-living genus Caenorhabditis. We show that the most abundant small RNAs released from the nematode parasite are not microRNAs as previously thought, but rather secondary small interfering RNAs (siRNAs) that are produced by RNA-dependent RNA Polymerases. The siRNAs that are released in EVs have distinct evolutionary properties compared to those resident in free-living or parasitic nematodes. Immunoprecipitation of exWAGO demonstrates that it specifically associates with siRNAs from transposons and newly evolved repetitive elements that are packaged in EVs and released into the host environment. Together this work demonstrates molecular and evolutionary selectivity in the small RNA sequences that are released in EVs into the host environment and identifies a novel Argonaute protein as the mediator of this.


Assuntos
Proteínas Argonautas/genética , Evolução Molecular , Heligmosomatoidea/genética , RNA Interferente Pequeno/genética , Animais , Caenorhabditis elegans/genética , Heligmosomatoidea/patogenicidade , Humanos , Filogenia
15.
PLoS Genet ; 14(11): e1007390, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500812

RESUMO

The ability to respond to injury is a biological process shared by organisms of different kingdoms that can even result in complete regeneration of a part or structure that was lost. Due to their immobility, multicellular fungi are prey to various predators and are therefore constantly exposed to mechanical damage. Nevertheless, our current knowledge of how fungi respond to injury is scarce. Here we show that activation of injury responses and hyphal regeneration in the filamentous fungus Trichoderma atroviride relies on the detection of two danger or alarm signals. As an early response to injury, we detected a transient increase in cytosolic free calcium ([Ca2+]c) that was promoted by extracellular ATP, and which is likely regulated by a mechanism of calcium-induced calcium-release. In addition, we demonstrate that the mitogen activated protein kinase Tmk1 plays a key role in hyphal regeneration. Calcium- and Tmk1-mediated signaling cascades activated major transcriptional changes early following injury, including induction of a set of regeneration associated genes related to cell signaling, stress responses, transcription regulation, ribosome biogenesis/translation, replication and DNA repair. Interestingly, we uncovered the activation of a putative fungal innate immune response, including the involvement of HET domain genes, known to participate in programmed cell death. Our work shows that fungi and animals share danger-signals, signaling cascades, and the activation of the expression of genes related to immunity after injury, which are likely the result of convergent evolution.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Micoses/microbiologia , Regeneração , Transdução de Sinais , Trichoderma/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas , Micoses/imunologia
16.
Exp Biol Med (Maywood) ; 243(13): 1027-1036, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30322266

RESUMO

IMPACT STATEMENT: This is the first study in which hsa-miR-708-5p has been identified in peripheral blood monocytes (osteoclast precursors) and associated with postmenopausal osteoporosis through small RNA-Sequencing, in an Admixed Mexican Mestizo population. By conducting in silico and bioinformatic analyzes, we identified target genes and important signaling pathways involved in bone metabolism pointing hsa-miR-708-5p as a candidate marker for osteoporosis in Mexican population. These approaches provide a landscape of the post-transcriptional regulation, which can be useful for the management of postmenopausal osteoporosis along with the potential use of microRNAs as markers for its early detection.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Osteoclastos/citologia , Osteoporose Pós-Menopausa/genética , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Humanos , Americanos Mexicanos , Monócitos/metabolismo , Análise de Sequência de RNA/métodos
17.
Mar Genomics ; 37: 161-175, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29239804

RESUMO

The lion-paw, Nodipecten subnodosus is one of three scallop species commercially exploited on the west coast of the Peninsula of Baja California. Because nothing is known about sex determination and sexual differentiation in hermaphrodite scallops, in the present work, a global transcriptomic analysis was performed in two early developmental stages, settling eyed-larvae and spat, as well as in three tissues (undifferentiated gonad, digestive gland, and adductor muscle). Over 27 million Illumina paired-end reads were obtained through the MiSeq platform. After processing the reads a total of 243,774 transcripts were assembled with an N50 of 980 and an average length of 775nt. A total of 43,252 proteins were inferred and 36,103 transcripts had at least one homolog in the SwissProt database according to a blastx search. After differential expression analyses and GO annotations it was possible to identify several sex-related genes in the scallop, including one known to be involved in the sex determination pathway of the hermaphrodite model organism Caenorhabditis elegans, N. subnodosus-sex1 (Ns-sex1). Other interesting sex determination and differentiation genes were Ns-dmrta2, Ns-sox9, Ns-wnt4, Ns-doa, Ns-ovo, Ns-vir, among others. Most of these genes were mainly expressed in the testis region, suggesting their participation in male gonad region sex differentiation. These results represent the first available information on the genetics of sex determination and differentiation in a functional hermaphrodite scallop.


Assuntos
Organismos Hermafroditas/fisiologia , Pectinidae/fisiologia , Diferenciação Sexual/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Organismos Hermafroditas/genética , México , Pectinidae/genética , Análise de Sequência de RNA
18.
Data Brief ; 15: 642-647, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124087

RESUMO

The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana, ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

19.
Dev Biol ; 431(2): 145-151, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912016

RESUMO

miRNAs are essential regulators of cell identity, yet their role in early embryo development in plants remains largely unexplored. To determine the earliest stage at which miRNAs act to promote pattern formation in embryogenesis, we examined a series of mutant alleles in the Arabidopsis thaliana miRNA biogenesis enzymes DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1). Cellular and patterning defects were observed in dcl1, se and hyl1 embryos from the zygote through the globular stage of embryogenesis. To identify miRNAs that are expressed in early embryogenesis, we sequenced mRNAs from globular stage Columbia wild type (wt) and se-1 embryos, and identified transcripts potentially corresponding to 100 miRNA precursors. Considering genome location and transcript increase between wt and se-1, 39 of these MIRNAs are predicted to be bona fide early embryo miRNAs. Among these are conserved miRNAs such as miR156, miR159, miR160, miR161, miR164, miR165, miR166, miR167, miR168, miR171, miR319, miR390 and miR394, as well as miRNAs whose function has never been characterized. Our analysis demonstrates that miRNAs promote pattern formation beginning in the zygote, and provides a comprehensive dataset for functional studies of individual miRNAs in Arabidopsis embryogenesis.


Assuntos
Arabidopsis/embriologia , Arabidopsis/genética , Padronização Corporal/genética , MicroRNAs/metabolismo , Sementes/embriologia , Sementes/genética , Zigoto/metabolismo , Arabidopsis/citologia , Divisão Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Morfogênese/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética
20.
PLoS One ; 12(8): e0183007, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832647

RESUMO

We utilized three ecologically diverse Drosophila species to explore the influence of ecological adaptation on transcriptomic responses to isocaloric diets differing in their relative proportions of protein to sugar. Drosophila melanogaster, a cosmopolitan species that breeds in decaying fruit, exemplifies individuals long exposed to a Western diet higher in sugar, while the natural diet of the cactophilic D. mojavensis, is much lower in carbohydrates. Drosophila arizonae, the sister species of D. mojavensis, is largely cactophilic, but also utilizes rotting fruits that are higher in sugars than cacti. We exposed third instar larvae for 24 hours to diets either (1) high in protein relative to sugar, (2) diets with equal amounts of protein and sugar, and (3) diets low in protein but high in sugar. As we predicted, based upon earlier interspecific studies of development and metabolism, the most extreme differences in gene expression under different dietary conditions were found in D. mojavensis followed by D. arizonae. No differential expression among diets was observed for D. melanogaster, a species that survives well under all three conditions, with little impact on its metabolism. We suggest that these three species together provide a model to examine individual and population differences in vulnerability to lifestyle-associated health problems such as metabolic syndrome and diabetes.


Assuntos
Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Drosophila melanogaster/genética , Comportamento Alimentar , Larva/fisiologia , Transcrição Gênica , Animais , Drosophila melanogaster/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...