Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37292647

RESUMO

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for ß-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here we compared combined CRISPR-Cas9 endonuclease editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. We found that combined targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two sgRNAs resulted in superior HbF induction, including in engrafting erythroid cells from sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers. We corroborated prior observations that double strand breaks (DSBs) could produce unintended on- target outcomes in hematopoietic stem and progenitor cells (HSPCs) such as long deletions and centromere-distal chromosome fragment loss. We show these unintended outcomes are a byproduct of cellular proliferation stimulated by ex vivo culture. Editing HSPCs without cytokine culture bypassed long deletion and micronuclei formation while preserving efficient on-target editing and engraftment function. These results indicate that nuclease editing of quiescent hematopoietic stem cells (HSCs) limits DSB genotoxicity while maintaining therapeutic potency and encourages efforts for in vivo delivery of nucleases to HSCs.

2.
N Engl J Med ; 384(3): 205-215, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33283990

RESUMO

BACKGROUND: Sickle cell disease is characterized by hemolytic anemia, pain, and progressive organ damage. A high level of erythrocyte fetal hemoglobin (HbF) comprising α- and γ-globins may ameliorate these manifestations by mitigating sickle hemoglobin polymerization and erythrocyte sickling. BCL11A is a repressor of γ-globin expression and HbF production in adult erythrocytes. Its down-regulation is a promising therapeutic strategy for induction of HbF. METHODS: We enrolled patients with sickle cell disease in a single-center, open-label pilot study. The investigational therapy involved infusion of autologous CD34+ cells transduced with the BCH-BB694 lentiviral vector, which encodes a short hairpin RNA (shRNA) targeting BCL11A mRNA embedded in a microRNA (shmiR), allowing erythroid lineage-specific knockdown. Patients were assessed for primary end points of engraftment and safety and for hematologic and clinical responses to treatment. RESULTS: As of October 2020, six patients had been followed for at least 6 months after receiving BCH-BB694 gene therapy; median follow-up was 18 months (range, 7 to 29). All patients had engraftment, and adverse events were consistent with effects of the preparative chemotherapy. All the patients who could be fully evaluated achieved robust and stable HbF induction (percentage HbF/(F+S) at most recent follow-up, 20.4 to 41.3%), with HbF broadly distributed in red cells (F-cells 58.9 to 93.6% of untransfused red cells) and HbF per F-cell of 9.0 to 18.6 pg per cell. Clinical manifestations of sickle cell disease were reduced or absent during the follow-up period. CONCLUSIONS: This study validates BCL11A inhibition as an effective target for HbF induction and provides preliminary evidence that shmiR-based gene knockdown offers a favorable risk-benefit profile in sickle cell disease. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT03282656).


Assuntos
Anemia Falciforme/terapia , Hemoglobina Fetal/biossíntese , Terapia Genética , Interferência de RNA , Proteínas Repressoras/genética , gama-Globinas/metabolismo , Adolescente , Adulto , Anemia Falciforme/genética , Criança , Regulação para Baixo , Feminino , Hemoglobina Fetal/genética , Técnicas de Silenciamento de Genes , Vetores Genéticos , Humanos , Masculino , Projetos Piloto , RNA Interferente Pequeno , Proteínas Repressoras/metabolismo , Transplante Autólogo , Adulto Jovem , gama-Globinas/genética
3.
Mol Ther Methods Clin Dev ; 17: 589-600, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32300607

RESUMO

In this work we provide preclinical data to support initiation of a first-in-human trial for sickle cell disease (SCD) using an approach that relies on reversal of the developmental fetal-to-adult hemoglobin switch. Erythroid-specific knockdown of BCL11A via a lentiviral-encoded microRNA-adapted short hairpin RNA (shRNAmiR) leads to reactivation of the gamma-globin gene while simultaneously reducing expression of the pathogenic adult sickle ß-globin. We generated a refined lentiviral vector (LVV) BCH-BB694 that was developed to overcome poor vector titers observed in the manufacturing scale-up of the original research-grade LVV. Healthy or sickle cell donor CD34+ cells transduced with Good Manufacturing Practices (GMP)-grade BCH-BB694 LVV achieved high vector copy numbers (VCNs) >5 and gene marking of >80%, resulting in a 3- to 5-fold induction of fetal hemoglobin (HbF) compared with mock-transduced cells without affecting growth, differentiation, and engraftment of gene-modified cells in vitro or in vivo. In vitro immortalization assays, which are designed to measure vector-mediated genotoxicity, showed no increased immortalization compared with mock-transduced cells. Together these data demonstrate that BCH-BB694 LVV is non-toxic and efficacious in preclinical studies, and can be generated at a clinically relevant scale in a GMP setting at high titer to support clinical testing for the treatment of SCD.

4.
Hum Gene Ther Clin Dev ; 29(2): 69-79, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29664709

RESUMO

Chronic granulomatous disease (CGD) is a debilitating primary immunodeficiency affecting phagocyte function due to the absence of nicotinamide dinucleotide phosphate (NADPH) oxidase activity. The vast majority of CGD patients in the Western world have mutations within the X-linked CYBB gene encoding for gp91phox (NOX2), the redox center of the NADPH oxidase complex (XCGD). Current treatments of XCGD are not entirely satisfactory, and prior attempts at autologous gene therapy using gammaretrovirus vectors did not provide long-term curative effects. A new strategy was developed based on the use of the lentiviral vector G1XCGD expressing high levels of the gp91phox transgene in myeloid cells. As a requisite for a clinical trial approval, standardized non-clinical studies were conducted in vitro and in mice in order to evaluate the pharmacodynamics and biosafety of the vector and the biodistribution of G1XCGD-transduced cells. Transduced CD34+ cells derived from XCGD patients engrafted and differentiated similarly to their non-transduced counterparts in xenograft mouse models and generated therapeutically relevant levels of NADPH activity in myeloid cells expressing gp91phox. Expression of functional gp91phox in hematopoietic cells did not affect their homing properties, which engrafted at high levels in mice. Extensive in vitro and in vivo genotoxicity studies found no evidence for adverse mutagenesis related to vector treatment. These studies paved the way for the approval of clinical trials in Europe and in the United States for the treatment of XCGD patients with G1XCGD gene-modified autologous hematopoietic cells.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Doença Granulomatosa Crônica/genética , NADPH Oxidase 2/genética , NADPH Oxidases/genética , Animais , Ensaios Clínicos como Assunto , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Doença Granulomatosa Crônica/patologia , Doença Granulomatosa Crônica/terapia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Xenoenxertos , Humanos , Lentivirus/genética , Camundongos , NADPH Oxidase 2/administração & dosagem
5.
PLoS One ; 7(9): e44505, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973456

RESUMO

Inefficient intracellular protein trafficking is a critical issue in the pathogenesis of a variety of diseases and in recombinant protein production. Here we investigated the trafficking of factor VIII (FVIII), which is affected in the coagulation disorder hemophilia A. We hypothesized that chemical chaperones may be useful to enhance folding and processing of FVIII in recombinant protein production, and as a therapeutic approach in patients with impaired FVIII secretion. A tagged B-domain-deleted version of human FVIII was expressed in cultured Chinese Hamster Ovary cells to mimic the industrial production of this important protein. Of several chemical chaperones tested, the addition of betaine resulted in increased secretion of FVIII, by increasing solubility of intracellular FVIII aggregates and improving transport from endoplasmic reticulum to Golgi. Similar results were obtained in experiments monitoring recombinant full-length FVIII. Oral betaine administration also increased FVIII and factor IX (FIX) plasma levels in FVIII or FIX knockout mice following gene transfer. Moreover, in vitro and in vivo applications of betaine were also able to rescue a trafficking-defective FVIII mutant (FVIIIQ305P). We conclude that chemical chaperones such as betaine might represent a useful treatment concept for hemophilia and other diseases caused by deficient intracellular protein trafficking.


Assuntos
Fator VIII/metabolismo , Hemofilia A/metabolismo , Chaperonas Moleculares/metabolismo , Análise de Variância , Animais , Betaína/metabolismo , Betaína/farmacologia , Western Blotting , Células CHO , Cricetinae , Cricetulus , Fator VIII/genética , Citometria de Fluxo , Vetores Genéticos , Hemofilia A/tratamento farmacológico , Humanos , Lentivirus , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Dobramento de Proteína , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Proteínas Recombinantes/biossíntese
6.
Blood ; 119(2): 602-11, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22031860

RESUMO

The complex of the serine protease factor IX (FIX) and its cofactor, factor VIII (FVIII), is crucial for propagation of the intrinsic coagulation cascade. Absence of either factor leads to hemophilia, a disabling disorder marked by excessive hemorrhage after minor trauma. FVIII is the more commonly affected protein, either by X-chromosomal gene mutations or in autoimmune-mediated acquired hemophilia. Whereas substitution of FVIII is the mainstay of hemophilia A therapy, treatment of patients with inhibitory Abs remains challenging. In the present study, we report the development of FIX variants that can propagate the intrinsic coagulation cascade in the absence of FVIII. FIX variants were expressed in FVIII-knockout (FVIII-KO) mice using a nonviral gene-transfer system. Expression of the variants shortened clotting times, reduced blood loss after tail-clip assay, and reinstalled clot formation, as tested by in vivo imaging of laser-induced vessel injury. In addition, we confirmed the therapeutic efficacy of FIX variants in mice with inhibitory Abs against FVIII. Further, mice tolerant to wild-type human FIX did not develop immune responses against the protein variants. Our results therefore indicate the feasibility of using variants of FIX to bypass FVIII as a novel treatment approach in hemophilia with and without neutralizing FVIII Abs.


Assuntos
Fator IX/genética , Fator VIII/fisiologia , Engenharia Genética , Terapia Genética , Variação Genética/genética , Hemofilia A/terapia , Hemorragia/terapia , Animais , Modelos Animais de Doenças , Fator IX/imunologia , Hemofilia A/complicações , Hemorragia/etiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Fenótipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Vacinação
7.
Hum Gene Ther ; 22(1): 101-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20677911

RESUMO

Advances in delivery techniques and in expression construct design have renewed interest in nonviral gene transfer. Here, we test plasmid or bacterial backbone free minicircle vectors for factor IX (FIX) expression by hydrodynamic liver-directed delivery. Both constructs are driven by a hepatic control region, the human α(1)-antitrypsin promoter, which results in long-term expression in FIX knockout mice. However, levels of expression were higher and expression loss over time was reduced when using minicircles. Even at the highest expression levels (>700% of normal) FIX was fully functional. Transgene loss was the main determinant for expression loss over time for both vector types. A significant effect of gene silencing was observed only for the plasmid, not for the minicircle vector. To determine the influence of promoter methylation, we performed bisulfite-mediated conversion and sequencing of vector DNA on days 14 and 100 after gene transfer. We determined a higher frequency of methyl-protected cytosines in CpGs and a lower degree of demethylation at bacterial Dcm methylation sequences near transcription factor-binding sites in the α(1)-antitrypsin promoter in plasmid compared with minicircle mice on day 100. Therefore, the methylation status might reflect differences in the levels and durability of expression. Judging from the high levels of functional FIX obtained, small fractions of liver or single liver segments should be sufficient to reach therapeutic efficacy in translating hydrodynamic delivery to humans. However, transgene loss remains to be addressed to further guarantee sustained expression over time.


Assuntos
Fator IX/metabolismo , Vetores Genéticos , Plasmídeos/genética , Regiões Promotoras Genéticas , Transgenes , Animais , Fator IX/genética , Expressão Gênica , Inativação Gênica , Técnicas de Transferência de Genes , Terapia Genética , Hidrodinâmica , Fígado/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
8.
Thromb Haemost ; 102(5): 925-35, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19888531

RESUMO

Considering the difficulty in detecting factor (F)VIII in vivo, fluorescently labelled FVIII protein provides a tool to analyse the intracellular localisation, bio distribution, and pharmacokinetics of the protein in living organisms. Here, we report the use of FVIII full length and B-domain deleted proteins, fused to enhanced green fluorescent protein (eGFP) at the C-terminus of the coagulation protein via a nine amino acid spanning linker. Comparison of the FVIII-eGFP fusion proteins to their unlabelled counterparts showed no impairment with respect to recombinant expression levels, intracellular processing, specific coagulant activity and decay at physiological temperature. Confocal live cell imaging demonstrated ER-Golgi-transport of B-domain deleted FVIII-eGFP in vesicular tubular carriers. Using temperature blocks and release experiments, imaging of FVIII-eGFP fusion proteins enabled for the first time the visualisation of the early secretory pathway of B-domain deleted FVIII in living cells and in particular highlighted the apparent deficit of active transport carriers, an observation consistent with the low rates of FVIII secretion seen in recombinant expression systems.


Assuntos
Fator VIII/farmacologia , Proteínas de Fluorescência Verde/genética , Animais , Coagulação Sanguínea/efeitos dos fármacos , Células CHO , Células COS , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Fator VIII/química , Fator VIII/genética , Fator VIII/metabolismo , Fator VIIIa/análise , Complexo de Golgi/metabolismo , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia
9.
FEBS J ; 275(20): 5108-16, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18795948

RESUMO

The hemoglobin gene 1 (dmeglob1) of the fruit fly Drosophila melanogaster is expressed in the tracheal system and fat body, and has been implicated in hypoxia resistance. Here we investigate the expression levels of dmeglob1 and lactate dehydrogenase (a positive control) in embryos, third instar larvae and adult flies under various regimes of hypoxia and hyperoxia. As expected, mRNA levels of lactate dehydrogenase increased under hypoxia. We show that expression levels of dmeglob1 are decreased under both short- and long-term hypoxia, compared with the normoxic (21% O2) control. By contrast, a hypoxia/reoxygenation regime applied to third instar larvae elevated the level of dmeglob1 mRNA. An excess of O2 (hyperoxia) also triggered an increase in dmeglob1 mRNA. The data suggest that Drosophila hemoglobin may be unlikely to function merely as a myoglobin-like O2 storage protein. Rather, dmeglob1 may protect the fly from an excess of O2, either by buffering the flux of O2 from the tracheoles to the cells or by degrading noxious reactive oxygen species.


Assuntos
Drosophila melanogaster , Regulação da Expressão Gênica/efeitos dos fármacos , Hemoglobinas/genética , Oxigênio/farmacologia , Animais , Proteínas de Drosophila , Embrião não Mamífero , Hiperóxia , Hipóxia , L-Lactato Desidrogenase/genética , Larva , RNA Mensageiro/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...