Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2321338121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568969

RESUMO

To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cromatina/metabolismo , Ritmo Circadiano/genética , Proteínas CLOCK/genética , DNA/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , RNA/metabolismo
2.
RNA ; 29(8): 1230-1242, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37169395

RESUMO

RNA binding proteins (RBPs) perform a myriad of functions and are implicated in numerous neurological diseases. To identify the targets of RBPs in small numbers of cells, we developed TRIBE, in which the catalytic domain of the RNA editing enzyme ADAR (ADARcd) is fused to an RBP. When the RBP binds to an mRNA, ADAR catalyzes A to G modifications in the target mRNA that can be easily identified in standard RNA sequencing. In STAMP, the concept is the same except the ADARcd is replaced by the RNA editing enzyme APOBEC. Here we compared TRIBE and STAMP side-by-side in human and Drosophila cells. The goal is to learn the pros and cons of each method so that researchers can choose the method best suited to their RBP and system. In human cells, TRIBE and STAMP were performed using the RBP TDP-43. Although they both identified TDP-43 target mRNAs, combining the two methods more successfully identified high-confidence targets. In Drosophila cells, RBP-APOBEC fusions generated only low numbers of editing sites, comparable to the level of control editing. This was true for two different RBPs, Hrp48 and Thor (Drosophila EIF4E-BP), indicating that STAMP does not work well in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/metabolismo
3.
Sci Adv ; 9(8): eade8500, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812309

RESUMO

Our recent single-cell sequencing of most adult Drosophila circadian neurons indicated notable and unexpected heterogeneity. To address whether other populations are similar, we sequenced a large subset of adult brain dopaminergic neurons. Their gene expression heterogeneity is similar to that of clock neurons, i.e., both populations have two to three cells per neuron group. There was also unexpected cell-specific expression of neuron communication molecule messenger RNAs: G protein-coupled receptor or cell surface molecule (CSM) transcripts alone can define adult brain dopaminergic and circadian neuron cell type. Moreover, the adult expression of the CSM DIP-beta in a small group of clock neurons is important for sleep. We suggest that the common features of circadian and dopaminergic neurons are general, essential for neuronal identity and connectivity of the adult brain, and that these features underlie the complex behavioral repertoire of Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/genética , Ritmo Circadiano/genética , Encéfalo/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(34): e2206066119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969763

RESUMO

The metronome-like circadian regulation of sleep timing must still adapt to an uncertain environment. Recent studies in Drosophila indicate that neuromodulation not only plays a key role in clock neuron synchronization but also affects interactions between the clock network and brain sleep centers. We show here that the targets of neuromodulators, G Protein Coupled Receptors (GPCRs), are highly enriched in the fly brain circadian clock network. Single-cell sequencing indicates that they are not only enriched but also differentially expressed and contribute to clock neuron identity. We generated a comprehensive guide library to mutagenize individual GPCRs in specific neurons and verified the strategy by introducing a targeted sequencing approach. Combined with a behavioral screen, the mutagenesis strategy revealed a role of dopamine in sleep regulation by identifying two dopamine receptors and a clock neuron subpopulation that gate the timing of sleep.


Assuntos
Ritmo Circadiano , Dopamina , Proteínas de Drosophila , Neurônios , Receptores Acoplados a Proteínas G , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Dopamina/genética , Dopamina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sono/genética
5.
Science ; 372(6539)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859000

RESUMO

Ray et al (Reports, 14 February 2020, p. 800) recently claimed temperature-compensated, free-running mRNA oscillations in Bmal1 -/- liver slices and skin fibroblasts. We reanalyzed these data and found far fewer reproducible mRNA oscillations in this genotype. We also note errors and potentially inappropriate analyses.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Fatores de Transcrição ARNTL/genética , Ritmo Circadiano/genética , Fibroblastos , Fígado , RNA Mensageiro/genética
6.
Elife ; 102021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33438579

RESUMO

Many different functions are regulated by circadian rhythms, including those orchestrated by discrete clock neurons within animal brains. To comprehensively characterize and assign cell identity to the 75 pairs of Drosophila circadian neurons, we optimized a single-cell RNA sequencing method and assayed clock neuron gene expression at different times of day. The data identify at least 17 clock neuron categories with striking spatial regulation of gene expression. Transcription factor regulation is prominent and likely contributes to the robust circadian oscillation of many transcripts, including those that encode cell-surface proteins previously shown to be important for cell recognition and synapse formation during development. The many other clock-regulated genes also constitute an important resource for future mechanistic and functional studies between clock neurons and/or for temporal signaling to circuits elsewhere in the fly brain.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica , Neurônios/fisiologia , Transcriptoma , Animais , Drosophila melanogaster/genética , Feminino , Masculino , Fatores de Tempo
7.
Curr Biol ; 29(1): 13-22.e3, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30554904

RESUMO

Seven neuropeptides are expressed within the Drosophila brain circadian network. Our previous mRNA profiling suggested that Allatostatin-C (AstC) is an eighth neuropeptide and specifically expressed in dorsal clock neurons (DN1s). Our results here show that AstC is, indeed, expressed in DN1s, where it oscillates. AstC is also expressed in two less well-characterized circadian neuronal clusters, the DN3s and lateral-posterior neurons (LPNs). Behavioral experiments indicate that clock-neuron-derived AstC is required to mediate evening locomotor activity under short (winter-like) and long (summer-like) photoperiods. The AstC-Receptor 2 (AstC-R2) is expressed in LNds, the clock neurons that drive evening locomotor activity, and AstC-R2 is required in these neurons to modulate the same short photoperiod evening phenotype. Ex vivo calcium imaging indicates that AstC directly inhibits a single LNd. The results suggest that a novel AstC/AstC-R2 signaling pathway, from dorsal circadian neurons to an LNd, regulates the evening phase in Drosophila.


Assuntos
Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fotoperíodo , Receptores Acoplados a Proteínas G/metabolismo
8.
Elife ; 72018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29863472

RESUMO

Although alternative pre-mRNA splicing (AS) significantly diversifies the neuronal proteome, the extent of AS is still unknown due in part to the large number of diverse cell types in the brain. To address this complexity issue, we used an annotation-free computational method to analyze and compare the AS profiles between small specific groups of Drosophila circadian neurons. The method, the Junction Usage Model (JUM), allows the comprehensive profiling of both known and novel AS events from specific RNA-seq libraries. The results show that many diverse and novel pre-mRNA isoforms are preferentially expressed in one class of clock neuron and also absent from the more standard Drosophila head RNA preparation. These AS events are enriched in potassium channels important for neuronal firing, and there are also cycling isoforms with no detectable underlying transcriptional oscillations. The results suggest massive AS regulation in the brain that is also likely important for circadian regulation.


Assuntos
Processamento Alternativo , Ritmo Circadiano , Drosophila melanogaster/genética , Neurônios/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Biologia Computacional/métodos , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Neurônios/citologia , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo
9.
J Neurosci ; 37(28): 6673-6685, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28592698

RESUMO

Behavioral circadian rhythms are controlled by multioscillator networks comprising functionally different subgroups of clock neurons. Studies have demonstrated that molecular clocks in the fruit fly Drosophila melanogaster are regulated differently in clock neuron subclasses to support their specific functions (Lee et al., 2016; Top et al., 2016). The nuclear receptor unfulfilled (unf) represents a regulatory node that provides the small ventral lateral neurons (s-LNvs) unique characteristics as the master pacemaker (Beuchle et al., 2012). We previously showed that UNF interacts with the s-LNv molecular clocks by regulating transcription of the core clock gene period (per) (Jaumouillé et al., 2015). To gain more insight into the mechanisms by which UNF contributes to the functioning of the circadian master pacemaker, we identified UNF target genes using chromatin immunoprecipitation. Our data demonstrate that a previously uncharacterized gene CG7837, which we termed R and B (Rnb), acts downstream of UNF to regulate the function of the s-LNvs as the master circadian pacemaker. Mutations and LNv-targeted adult-restricted knockdown of Rnb impair locomotor rhythms. RNB localizes to the nucleus, and its loss-of-function blunts the molecular rhythms and output rhythms of the s-LNvs, particularly the circadian rhythms in PDF accumulation and axonal arbor remodeling. These results establish a second pathway by which UNF interacts with the molecular clocks in the s-LNvs and highlight the mechanistic differences in the molecular clockwork within the pacemaker circuit.SIGNIFICANCE STATEMENT Circadian behavior is generated by a pacemaker circuit comprising diverse classes of pacemaker neurons, each of which contains a molecular clock. In addition to the anatomical and functional diversity, recent studies have shown the mechanistic differences in the molecular clockwork among the pacemaker neurons in Drosophila Here, we identified the molecular characteristics distinguishing the s-LNvs, the master pacemaker of the locomotor rhythms, from other clock neuron subtypes. We demonstrated that a newly identified gene Rnb is an s-LNv-specific regulator of the molecular clock and essential for the generation of circadian locomotor behavior. Our results provide additional evidence to the emerging view that the differential regulation of the molecular clocks underlies the functional differences among the pacemaker neuron subgroups.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Neurônios/fisiologia , Proteínas Circadianas Period/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Núcleo Celular/metabolismo
10.
PLoS Genet ; 13(2): e1006613, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28182648

RESUMO

Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts "around the clock" from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons.


Assuntos
Relógios Circadianos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA/métodos , Fatores de Tempo , Fatores de Transcrição/genética
11.
Sci Rep ; 7: 42586, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195208

RESUMO

Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.


Assuntos
Cálcio/metabolismo , Drosophila/genética , Drosophila/metabolismo , Neurônios/metabolismo , Pupa/genética , Transcriptoma , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Voo Animal , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino
12.
Nature ; 536(7616): 292-7, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27479324

RESUMO

Little is known about the ability of Drosophila circadian neurons to promote sleep. Here we show, using optogenetic manipulation and video recording, that a subset of dorsal clock neurons (DN1s) are potent sleep-promoting cells that release glutamate to directly inhibit key pacemaker neurons. The pacemakers promote morning arousal by activating these DN1s, implying that a late-day feedback circuit drives midday siesta and night-time sleep. To investigate more plastic aspects of the sleep program, we used a calcium assay to monitor and compare the real-time activity of DN1 neurons in freely behaving males and females. Our results revealed that DN1 neurons were more active in males than in females, consistent with the finding that male flies sleep more during the day. DN1 activity is also enhanced by elevated temperature, consistent with the ability of higher temperatures to increase sleep. These new approaches indicate that DN1s have a major effect on the fly sleep-wake profile and integrate environmental information with the circadian molecular program.


Assuntos
Ritmo Circadiano/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Retroalimentação Fisiológica , Neurônios/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Relógios Biológicos/fisiologia , Cálcio/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Atividade Motora , Optogenética , Caracteres Sexuais , Temperatura , Gravação em Vídeo
13.
Methods Enzymol ; 551: 369-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25662465

RESUMO

Drosophila melanogaster has a robust circadian clock, which drives a rhythmic behavior pattern: locomotor activity increases in the morning shortly before lights on (M peak) and in the evening shortly before lights off (E peak). This pattern is controlled by ~75 pairs of circadian neurons in the Drosophila brain. One key group of neurons is the M-cells (PDF(+) large and small LNvs), which control the M peak. A second key group is the E-cells, consisting of four LNds and the fifth small LNv, which control the E peak. Recent studies show that the M-cells have a second role in addition to controlling the M peak; they communicate with the E-cells (as well as DN1s) to affect their timing, probably as a function of environmental conditions (Guo, Cerullo, Chen, & Rosbash, 2014). To learn about molecules within the M-cells important for their functional roles, we have adapted methods to manually sort fluorescent protein-expressing neurons of interest from dissociated Drosophila brains. We isolated mRNA and miRNA from sorted M-cells and amplified the resulting DNAs to create deep-sequencing libraries. Visual inspection of the libraries illustrates that they are specific to a particular neuronal subgroup; M-cell libraries contain timeless and dopaminergic cell libraries contain ple/TH. Using these data, it is possible to identify cycling transcripts as well as many mRNAs and miRNAs specific to or enriched in particular groups of neurons.


Assuntos
Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Neurônios/metabolismo , Animais , Encéfalo/citologia , Separação Celular , Relógios Circadianos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
14.
Nucleic Acids Res ; 43(4): 2199-215, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25634895

RESUMO

Neuroendocrine (NE) cells use large dense core vesicles (LDCVs) to traffic, process, store and secrete neuropeptide hormones through the regulated secretory pathway. The dimmed (DIMM) basic helix-loop-helix transcription factor of Drosophila controls the level of regulated secretory activity in NE cells. To pursue its mechanisms, we have performed two independent genome-wide analyses of DIMM's activities: (i) in vivo chromatin immunoprecipitation (ChIP) to define genomic sites of DIMM occupancy and (ii) deep sequencing of purified DIMM neurons to characterize their transcriptional profile. By this combined approach, we showed that DIMM binds to conserved E-boxes in enhancers of 212 genes whose expression is enriched in DIMM-expressing NE cells. DIMM binds preferentially to certain E-boxes within first introns of specific gene isoforms. Statistical machine learning revealed that flanking regions of putative DIMM binding sites contribute to its DNA binding specificity. DIMM's transcriptional repertoire features at least 20 LDCV constituents. In addition, DIMM notably targets the pro-secretory transcription factor, creb-A, but significantly, DIMM does not target any neuropeptide genes. DIMM therefore prescribes the scale of secretory activity in NE neurons, by a systematic control of both proximal and distal points in the regulated secretory pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Células Neuroendócrinas/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Sequência Conservada , Drosophila/genética , Drosophila/metabolismo , Elementos E-Box , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala , Via Secretória/genética , Análise de Sequência de DNA , Transativadores/metabolismo , Transcriptoma
15.
J Neurosci ; 34(8): 2910-20, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24553932

RESUMO

Glial cells are emerging as important regulators of synapse formation, maturation, and plasticity through the release of secreted signaling molecules. Here we use chromatin immunoprecipitation along with Drosophila genomic tiling arrays to define potential targets of the glial transcription factor Reversed polarity (Repo). Unexpectedly, we identified wingless (wg), a secreted morphogen that regulates synaptic growth at the Drosophila larval neuromuscular junction (NMJ), as a potential Repo target gene. We demonstrate that Repo regulates wg expression in vivo and that local glial cells secrete Wg at the NMJ to regulate glutamate receptor clustering and synaptic function. This work identifies Wg as a novel in vivo glial-secreted factor that specifically modulates assembly of the postsynaptic signaling machinery at the Drosophila NMJ.


Assuntos
Neuroglia/fisiologia , Junção Neuromuscular/fisiologia , Receptores de Glutamato/metabolismo , Sinapses/fisiologia , Proteínas Wnt/fisiologia , Animais , Imunoprecipitação da Cromatina , Drosophila , Proteínas de Drosophila/genética , Fenômenos Eletrofisiológicos/fisiologia , Proteínas de Homeodomínio/genética , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia Confocal , Interferência de RNA/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
16.
Neuron ; 79(2): 281-92, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23889933

RESUMO

The transcription factor Mef2 regulates activity-dependent neuronal plasticity and morphology in mammals, and clock neurons are reported to experience activity-dependent circadian remodeling in Drosophila. We show here that Mef2 is required for this daily fasciculation-defasciculation cycle. Moreover, the master circadian transcription complex CLK/CYC directly regulates Mef2 transcription. ChIP-Chip analysis identified numerous Mef2 target genes implicated in neuronal plasticity, including the cell-adhesion gene Fas2. Genetic epistasis experiments support this transcriptional regulatory hierarchy, CLK/CYC- > Mef2- > Fas2, indicate that it influences the circadian fasciculation cycle within pacemaker neurons, and suggest that this cycle also contributes to circadian behavior. Mef2 therefore transmits clock information to machinery involved in neuronal remodeling, which contributes to locomotor activity rhythms.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/fisiologia , Atividade Motora/fisiologia , Fatores de Regulação Miogênica/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Animais , Animais Geneticamente Modificados , Proteínas CLOCK/fisiologia , Drosophila melanogaster , Neurônios/fisiologia
17.
Elife ; 1: e00011, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23150795

RESUMO

A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues.DOI:http://dx.doi.org/10.7554/eLife.00011.001.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , RNA Mensageiro/genética , Transcriptoma , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , DNA/metabolismo , Perfilação da Expressão Gênica , Luz , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Mensageiro/metabolismo
18.
Genes Dev ; 26(22): 2536-49, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23154984

RESUMO

A conserved transcriptional feedback loop underlies animal circadian rhythms. In Drosophila, the transcription factors CLOCK (CLK) and CYCLE (CYC) activate the transcription of direct target genes like period (per) and timeless (tim). They encode the proteins PER and TIM, respectively, which repress CLK/CYC activity. Previous work indicates that repression is due to a direct PER-CLK/CYC interaction as well as CLK/CYC phosphorylation. We describe here the role of ubiquitin-specific protease 8 (USP8) in circadian transcriptional repression as well as the importance of CLK ubiquitylation in CLK/CYC transcription activity. usp8 loss of function (RNAi) or expression of a dominant-negative form of the protein (USP8-DN) enhances CLK/CYC transcriptional activity and alters fly locomotor activity rhythms. Clock protein and mRNA molecular oscillations are virtually absent within circadian neurons of USP8-DN flies. Furthermore, CLK ubiquitylation cycles robustly in wild-type flies and peaks coincident with maximal CLK/CYC transcription. As USP8 interacts with CLK and expression of USP8-DN increases CLK ubiquitylation, the data indicate that USP8 deubiquitylates CLK, which down-regulates CLK/CYC transcriptional activity. Taken together with the facts that usp8 mRNA cycles and that its transcription is activated directly by CLK/CYC, USP8, like PER and TIM, contributes to the transcriptional feedback loop cycle that underlies circadian rhythms.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Ubiquitina Tiolesterase/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Ritmo Circadiano/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Atividade Motora/genética , Proteínas Circadianas Period/metabolismo , Isoformas de Proteínas , Interferência de RNA , Ubiquitinação
19.
Genes Dev ; 25(23): 2502-12, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22156210

RESUMO

To determine the prevalence of cotranscriptional splicing in Drosophila, we sequenced nascent RNA transcripts from Drosophila S2 cells as well as from Drosophila heads. Eighty-seven percent of the introns assayed manifest >50% cotranscriptional splicing. The remaining 13% are cotranscriptionally spliced poorly or slowly, with ∼3% being almost completely retained in nascent pre-mRNA. Although individual introns showed slight but statistically significant differences in splicing efficiency, similar global levels of splicing were seen from both sources. Importantly, introns with low cotranscriptional splicing efficiencies are present in the same primary transcript with efficiently spliced introns, indicating that splicing is intron-specific. The analysis also indicates that cotranscriptional splicing is less efficient for first introns, longer introns, and introns annotated as alternative. Finally, S2 cells expressing the slow RpII215(C4) mutant show substantially less intron retention than wild-type S2 cells.


Assuntos
Drosophila/genética , Precursores de RNA/genética , Splicing de RNA , Transcrição Gênica , Animais , Drosophila/metabolismo , Íntrons , Mutação , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Genes Dev ; 25(22): 2374-86, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22085964

RESUMO

CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP-chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4-6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation.


Assuntos
Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Regulação da Expressão Gênica , Fatores de Transcrição ARNTL/metabolismo , Animais , DNA Polimerase II/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas Circadianas Period/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA