Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 256: 121490, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614028

RESUMO

Urbanization increases the land surface temperature through surface mineralization, adversely affecting vegetation and enhancing the urban heat island (UHI) effect. Global climate change has intensified this warming effect with more frequent and intense heatwaves during hot seasons. While these transformations influence soil temperature, their consequences on drinking water temperature within the drinking water distribution system (DWDS) remains poorly understood. Literature proposes to increase pipe burial depths to mitigate drinking water heating during summer. In this study, we monitored drinking water temperatures in a DWDS in Montreal, Canada with deeply buried pipes (average 1.8 m) during the summer of 2022, focusing on two contrasting zones in terms of UHI and green coverage. Monitoring revealed a 8°C heating effect compared to the water treatment plant, attributed to low green coverage and anthropogenic heat. Conversely, the greener zone exhibited cooler drinking water temperatures, reaching a maximum cooling effect of 8°C as compared to the temperature at the exit of the water treatment plant. Utilizing a soil and water temperature model, we predicted drinking water temperatures within the DWDS with acceptable accuracy. Soil temperature modeling results aligned well with measured water temperatures, highlighting DWDS water temperature approaching its surrounding soil temperature fairly quickly. Despite heatwaves, no immediate correlation emerged between air temperature records and measured water temperatures, emphasizing soil temperature as a superior indicator. An increase in water age displayed no correlation with an increase in measured water temperature, underscoring the dominant influence of UHI and green coverage on water temperature. These findings highlight the cooling advantages of green spaces during summer, providing valuable insights for sustainable urban planning.


Assuntos
Cidades , Água Potável , Temperatura Alta , Temperatura , Quebeque , Canadá , Mudança Climática , Monitoramento Ambiental/métodos , Modelos Teóricos , Abastecimento de Água , Estações do Ano
2.
J Environ Manage ; 355: 120470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422852

RESUMO

The global change in surface water quality calls for increased preparedness of drinking water utilities. The increasing frequency of extreme climatic events combined with global warming can impact source and treated water characteristics such as temperature and natural organic matter. On the other hand, water saving policies in response to water and energy crisis in some countries can aggravate the situation by increasing the water residence time in the drinking water distribution system (DWDS). This study investigates the individual and combined effect of increased dissolved organic carbon (DOC), increased temperature, and reduced water demand on fate and transport of chlorine and trihalomethanes (THMs) within a full-scale DWDS in Canada. Chlorine and THM prediction models were calibrated with laboratory experiments and implemented in EPANET-MATLAB toolkit for prediction in the DWDS under different combinations of DOC, temperature, and demand. The duration of low chlorine residuals (<0.2 mg/L) and high THM (>80 µg/L) periods within a day in each scenario was reported using a reliability index. Low-reliability zones prone to microbial regrowth or high THM exposure were then delineated geographically on the city DWDS. Results revealed that water demand reduction primarily affects chlorine availability, with less concern for THM formation. The reduction in nodal chlorine reliability was gradual with rising temperature and DOC of the treated water and reducing water demand. Nodal THM reliability remained unchanged until certain thresholds were reached, i.e., temperature >25 °C for waters with DOC <1.52 mg/L, and DOC >2.2 mg/L for waters with temperature = 17 °C. At these critical thresholds, an abrupt network-wide THM exceedance of 80 µg/L occurred. Under higher DOC and temperature levels in future, employing the proposed approach revealed that increasing the applied chlorine dosage (which is a conventional method used to ensure sufficient chlorine coverage) results in elevated exposure toTHMs and is not recommended. This approach aids water utilities in assessing the effectiveness of different intervention measures to solve water quality problems, identify site-specific thresholds leading to major decreases in system reliability, and integrate climate adaptation into water safety management.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloro , Purificação da Água/métodos , Trialometanos/análise , Mudança Climática , Reprodutibilidade dos Testes , Cloretos , Poluentes Químicos da Água/análise , Desinfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA