Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 85(3 Pt A): 381-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23791683

RESUMO

Inefficient drug delivery to the brain is a major obstacle for pharmacological management of brain diseases. We investigated the ability of bolavesicles - monolayer membrane vesicles self-assembled from synthetic bolaamphiphiles that contain two hydrophilic head groups at each end of a hydrophobic alkyl chain - to permeate the blood-brain barrier and to deliver the encapsulated materials into the brain. Cationic vesicles with encapsulated kyotorphin and leu-enkephalin (analgesic peptides) were prepared from the bolalipids GLH-19 and GLH-20 and studied for their analgesic effects in vivo in experimental mice. The objectives were to determine: (a) whether bolavesicles can efficiently encapsulate analgesic peptides, (b) whether bolavesicles can deliver these peptides to the brain in quantities sufficient for substantial analgesic effect, and to identify the bolavesicle formulation/s that provides the highest analgetic efficiency. The results indicate that the investigated bolavesicles can deliver analgesic peptides across the blood-brain barrier and release them in the brain in quantities sufficient to elicit efficient and prolonged analgesic activity. The analgesic effect is enhanced by using bolavesicles made from a mixture the bolas GLH-19 (that contains non-hydrolyzable acetylcholine head group) and GLH-20 (that contains hydrolysable acetylcholine head group) and by incorporating chitosan pendants into the formulation. The release of the encapsulated materials (the analgesic peptides kyotorphin and leu-enkephalin) appears to be dependent on the choline esterase (ChE) activity in the brain vs. other organs and tissues. Pretreatment of experimental animals with pyridostigmine (the BBB-impermeable ChE inhibitor) enhances the analgesic effects of the studied formulations. The developed formulations and the approach for their controlled decapsulation can serve as a useful modality for brain delivery of therapeutically-active compounds.


Assuntos
Analgésicos/administração & dosagem , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Cátions , Quitosana/química , Colinesterases/metabolismo , Preparações de Ação Retardada , Modelos Animais de Doenças , Portadores de Fármacos/química , Endorfinas/administração & dosagem , Endorfinas/farmacocinética , Endorfinas/farmacologia , Encefalina Leucina/administração & dosagem , Encefalina Leucina/farmacocinética , Encefalina Leucina/farmacologia , Furanos/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Dor/tratamento farmacológico , Peptídeos/química , Piridonas/química , Distribuição Tecidual
2.
J Control Release ; 160(2): 315-21, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22261280

RESUMO

Bolaamphiphilic cationic vesicles with acetylcholine (ACh) surface groups were investigated for their ability to deliver a model protein-bovine serum albumin conjugated to fluorescein isothiocyanate (BSA-FITC) across biological barriers in vitro and in vivo. BSA-FITC-loaded vesicles were internalized into cells in culture, including brain endothelial b.End3 cells, at 37 °C, but not at 4 °C, indicating an active uptake process. To examine if BSA-FITC-loaded vesicles were stable enough for in vivo delivery, we tested vesicle stability in whole serum. The half-life of cationic BSA-FITC-loaded vesicles with ACh surface groups that are hydrolyzed by choline esterase (ChE) was about 2 h, whereas the half-life of vesicles with similar surface groups, but which are not hydrolyzed by choline esterase (ChE), was over 5 h. Pyridostigmine, a choline esterase inhibitor that does not penetrate the blood-brain barrier (BBB), increased the stability of the ChE-sensitive vesicles to 6 h but did not affect the stability of vesicles with ACh surface groups that are not hydrolyzed by ChE. Following intravenous administration to pyridostigmine-pretreated mice, BSA-FITC encapsulated in ChE-sensitive vesicles was distributed into various tissues with marked accumulation in the brain, whereas non-encapsulated (free) BSA-FITC was detected only in peripheral tissues, but not in the brain. These results show that cationic bolaamphiphilic vesicles with ACh head groups are capable of delivering proteins across biological barriers, such as the cell membrane and the blood-brain barrier (BBB). Brain ChE activity destabilizes the vesicles and releases the encapsulated protein, enabling its accumulation in the brain.


Assuntos
Encéfalo/metabolismo , Portadores de Fármacos/química , Furanos/química , Nanopartículas/química , Piridonas/química , Soroalbumina Bovina/administração & dosagem , Animais , Encéfalo/irrigação sanguínea , Bovinos , Composição de Medicamentos , Estabilidade de Medicamentos , Células Endoteliais/metabolismo , Humanos , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos ICR , Soroalbumina Bovina/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...