Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607611

RESUMO

Water electrolysis has attracted scientists' attention as a green route for energy generation. However, the sluggish kinetics of oxygen evolution reaction (OER) remarkably increases the reaction overpotential. In this work, we developed Co-based nanomaterials as cost-effective, highly efficient catalysts for OER. In this regard, different Co-based metal-organic frameworks (MOFs) were synthesized using different organic linkers. After annealing under inert atmosphere, the corresponding Co-embedded mesoporous carbon (Co/MC) materials were produced. Among them, Co/MC synthesized using 2-methyl imidazole (Co/NMC-2MeIM) expressed the highest surface area (412 m2/g) compared to its counterparts. Furthermore, it expressed a higher degree of defects as depicted by Raman spectra. Co/NMC-2MeIM exhibited the best catalytic performance toward OER in alkaline medium. It afforded an overpotential of 292 mV at a current density of 10 mA cm-2 and a Tafel slope of 99.2 mV dec-1. The superior electrocatalytic performance of Co/NMC-2MeIM is attributed to its high content of Co3+ on the surface, high surface area, and enhanced electrical conductivity induced by nitrogen doping. Furthermore, its high content of pyridinic-N and high degree of defects remarkably enhance the charge transfer between the adsorbed oxygen species and the active sites. These results may pave the avenue toward further investigation of metal/carbon materials in a wide range of electrocatalytic applications.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745390

RESUMO

Assigned to their outstanding physicochemical properties, TiO2-based materials have been studied in various applications. Herein, TiO2 doped with different Mo contents (Mo-TiO2) was synthesized via a microwave-assisted solvothermal approach. This was achieved using titanium (IV) butoxide and molybdenum (III) chloride as a precursor and dodecylamine as a surface directing agent. The uniform effective heating delivered by microwave heating reduced the reaction time to less than 30 min, representing several orders of magnitude lower than conventional heating methods. The average particle size ranged between 9.7 and 27.5 nm and it decreased with increasing the Mo content. Furthermore, Mo-TiO2 revealed mesoporous architectures with a high surface area ranging between 170 and 260 m2 g-1, which is superior compared to previously reported Mo-doped TiO2. The performance of Mo-TiO2 was evaluated towards the adsorption of Rhodamine B (RhB). In contrast to TiO2, which revealed negligible adsorption for RhB, Mo-doped samples depicted rapid adsorption for RhB, with a rate that increased with the increase in Mo content. Additionally, Mo-TiO2 expressed enhanced adsorption kinetics for RhB compared to state-of-the-art adsorbents. The introduced synthesis procedure holds a grand promise for the versatile synthesis of metal-doped TiO2 nanostructures with outstanding physicochemical properties.

3.
RSC Adv ; 12(3): 1694-1703, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425214

RESUMO

Oxygen evolution reaction (OER) has arisen as an outstanding technology for energy generation, conversion, and storage. Herein, we investigated the synthesis of nickel-based hybrid metal oxides (Ni x M1-x O y ) and their catalytic performance towards OER. Ni x M1-x O y catalysts were synthesized by solution combustion synthesis (SCS) using the metal nitrates as oxidizer and glycine as fuel. Scanning electron microscope (SEM) micrographs display a porous morphology for the hybrid binary Ni x M1-x O y , the common feature of combusted materials. X-ray diffraction (XRD) of Ni x M1-x O y depicted well-defined diffraction peaks, which confirms the crystalline nature of synthesized catalysts. The particle size of as-synthesized materials ranges between 20 and 30 nm with a mesoporous nature as revealed by N2-physisorption. The electrocatalytic performance of the as-prepared materials was evaluated towards OER in alkaline medium. Among them, Ni x Co1-x O y showed the best catalytic performance. For instance, it exhibited the lowest overpotential at a current density of 10 mA cm-2 (404 mV), onset potential (1.605 V), and Tafel slope (52.7 mV dec-1). The enhanced electrocatalytic performance of Ni x Co1-x O y was attributed to the synergism between cobalt and nickel and the alteration of the electronic structure of nickel. Also, Ni x Co1-x O y afforded the highest Ni3+/Ni2+ when compared to other electrocatalysts. This leads to higher oxidation states of Ni species, which promote and improve the electrocatalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA