Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 342: 139950, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648163

RESUMO

The process industries play a significant role in boosting the economy of any nation. However, poor management in several industries has been posing worrisome threats to an environment that was previously immaculate. As a result, the untreated waste and wastewater discarded by many industries contain abundant organic matter and other toxic chemicals. It is more likely that they disrupt the proper functioning of the water bodies by perturbing the sustenance of many species of flora and fauna occupying the different trophic levels. The simultaneous threats to human health and the environment, as well as the global energy problem, have encouraged a number of nations to work on the development of renewable energy sources. Hence, bioelectrochemical systems (BESs) have attracted the attention of several stakeholders throughout the world on many counts. The bioelectricity generated from BESs has been recognized as a clean fuel. Besides, this technology has advantages such as the direct conversion of substrate to electricity, and efficient operation at ambient and even low temperatures. An overview of the BESs, its important operating parameters, bioremediation of industrial waste and wastewaters, biodegradation kinetics, and artificial neural network (ANN) modeling to describe substrate removal/elimination and energy production of the BESs are discussed. When considering the potential for use in the industrial sector, certain technical issues of BES design and the principal microorganisms/biocatalysts involved in the degradation of waste are also highlighted in this review.


Assuntos
Fontes de Energia Bioelétrica , Humanos , Águas Residuárias , Eletricidade , Reatores Biológicos , Biodegradação Ambiental , Eletrodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35329114

RESUMO

The impetus to predicting future biomass consumption focuses on sustainable energy, which concerns the non-renewable nature of fossil fuels and the environmental challenges associated with fossil fuel burning. However, the production of rice residue in the form of rice husk (RH) and rice straw (RS) has brought an array of benefits, including its utilization as biofuel to augment or replace fossil fuel. Rice residue characterization, valorization, and techno-economic analysis require a comprehensive review to maximize its inherent energy conversion potential. Therefore, the focus of this review is on the assessment of rice residue characterization, valorization approaches, pre-treatment limitations, and techno-economic analyses that yield a better biofuel to adapt to current and future energy demand. The pre-treatment methods are also discussed through torrefaction, briquetting, pelletization and hydrothermal carbonization. The review also covers the limitations of rice residue utilization, as well as the phase structure of thermochemical and biochemical processes. The paper concludes that rice residue is a preferable sustainable biomass option for both economic and environmental growth.


Assuntos
Biocombustíveis , Oryza , Biomassa , Análise Custo-Benefício , Combustíveis Fósseis
3.
Chemosphere ; 290: 133184, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34890618

RESUMO

Microbial fuel cells (MFCs) are an emerging technology for converting organic waste into electricity, thus providing potential solution to energy crises along with eco-friendly wastewater treatment. The electrode properties and biocatalysts are the major factors affecting electricity production in MFC. The electrons generated during microbial metabolism are captured by the anode and transferred towards the cathode via an external circuit, causing the flow of electricity. This flow of electrons is greatly influenced by the electrode properties and thus, much effort has been made towards electrode modification to improve the MFC performance. Different semiconductors, nanostructured metal oxides and their composite materials have been used to modify the anode as they possess high specific surface area, good biocompatibility, chemical stability and conductive properties. The cathode materials have also been modified using metals like platinum and nano-composites for increasing the redox potential, electrical conductivity and surface area. Therefore, this paper reviews the recent developments in the modification of electrodes towards improving the power generation capacity of MFCs.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Eletrodos , Cinética
4.
Artigo em Inglês | MEDLINE | ID: mdl-34770196

RESUMO

Microbial C1 gas conversion technologies have developed into a potentially promising technology for converting waste gases (CO2, CO) into chemicals, fuels, and other materials. However, the mass transfer constraint of these poorly soluble substrates to microorganisms is an important challenge to maximize the efficiencies of the processes. These technologies have attracted significant scientific interest in recent years, and many reactor designs have been explored. Syngas fermentation and hydrogenotrophic methanation use molecular hydrogen as an electron donor. Furthermore, the sequestration of CO2 and the generation of valuable chemicals through the application of a biocathode in bioelectrochemical cells have been evaluated for their great potential to contribute to sustainability. Through a process termed microbial chain elongation, the product portfolio from C1 gas conversion may be expanded further by carefully driving microorganisms to perform acetogenesis, solventogenesis, and reverse ß-oxidation. The purpose of this review is to provide an overview of the various kinds of bioreactors that are employed in these microbial C1 conversion processes.


Assuntos
Reatores Biológicos , Gases , Fermentação , Hidrogênio , Oxirredução
5.
Bioresour Technol ; 300: 122659, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31893537

RESUMO

Several anaerobic bioconversion technologies produce short chain volatile fatty acids and sometimes ethanol, which can together be elongated to hexanoic acid (C6 acid) by Clostridium kluyveri in a secondary fermentation process. Initiatives are needed to further optimize the process. Therefore, five strategies were tested aiming at elucidating their influence on hexanoic acid production from mixtures of acetic acid, butyric acid and ethanol. pH-regulated bioreactors, maintained at pH 7.5, 6.8 or 6.4 led to maximum C6 acid concentrations of, respectively, 19.4, 18.3 and 13.3 g L-1. At pH 6.8, yeast extract omission resulted in a decrease of the hexanoic acid concentration to 12.0 g L-1 while the addition of an inorganic carbon source, such as bicarbonate, for pH control, increased the C6 acid concentration up to 21.4 g L-1. This research provides guidelines for efficient improved production of hexanoic acid by pure cultures of C. kluyveri, contributing to the state of art.


Assuntos
Caproatos , Clostridium kluyveri , Reatores Biológicos , Carbono , Fermentação , Concentração de Íons de Hidrogênio , Extratos Vegetais
6.
Bioresour Technol ; 253: 227-234, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29348063

RESUMO

A two-stage continuous system with two stirred tank reactors in series was utilized to perform syngas fermentation using Clostridium carboxidivorans. The first bioreactor (bioreactor 1) was maintained at pH 6 to promote acidogenesis and the second one (bioreactor 2) at pH 5 to stimulate solventogenesis. Both reactors were operated in continuous mode by feeding syngas (CO:CO2:H2:N2; 30:10:20:40; vol%) at a constant flow rate while supplying a nutrient medium at different flow rates of 8.1, 15, 22 and 30 ml/h. A cell recycling unit was added to bioreactor 2 in order to recycle the cells back to the reactor, maintaining the OD600 around 1 in bioreactor 2 throughout the experimental run. When comparing the flow rates, the best results in terms of solvent production were obtained with a flow rate of 22 ml/h, reaching the highest average outlet concentration for alcohols (1.51 g/L) and the most favorable alcohol/acid ratio of 0.32.


Assuntos
Reatores Biológicos , Clostridium , Etanol , Fermentação , Solventes
7.
Bioresour Technol ; 239: 244-249, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28521235

RESUMO

Syngas bioconversion is a promising method for bioethanol production, but some VFA remains at the end of fermentation. A two-stage process was set-up, including syngas fermentation as first stage under strict anaerobic conditions using C. autoethanogenum as inoculum, with syngas (CO/CO2/H2/N2, 30/10/20/40) as gaseous substrate. The second stage consisted in various fed-batch assays using a highly enriched PHA accumulating biomass as inoculum, where the potential for biopolymer production from the remaining acetic acid at the end of the syngas fermentation was evaluated. All of the acetic acid was consumed and accumulated as biopolymer, while ethanol and 2,3-butanediol remained basically unused. It can be concluded that a high C/N ratio in the effluent from the syngas fermentation stage was responsible for non-consumption of alcohols. A maximum PHA content of 24% was reached at the end of the assay.


Assuntos
Biopolímeros , Reatores Biológicos , Butileno Glicóis , Fermentação
8.
World J Microbiol Biotechnol ; 33(3): 43, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28160118

RESUMO

Bioprocesses in conventional second generation biorefineries are mainly based on the fermentation of sugars obtained from lignocellulosic biomass or agro-industrial wastes. An alternative to this process consists in gasifying those same feedstocks or even other carbon-containing materials to obtain syngas which can also be fermented by some anaerobic bacteria to produce chemicals or fuels. Carbon monoxide, carbon dioxide and hydrogen, which are the main components of syngas, are also found in some industrial waste gases, among others in steel industries. Clostridium carboxidivorans is able to metabolise such gases to produce ethanol and higher alcohols, i.e. butanol and hexanol, following the Wood-Ljungdahl pathway. This does simultaneously allow the removal of volatile pollutants involved in climate change. The bioconversion is a two step process in which organic acids (acetate, butyrate, hexanoate) are produced first, followed by the accumulation of alcohols; although partial overlap in time of acids and alcohols production may sometimes take place as well. Several parameters, among others pH, temperature, or gas-feed flow rates in bioreactors, affect the bioconversion process. Besides, the accumulation of high concentrations of alcohols in the fermentation broth inhibits the growth and metabolic activity of C. carboxidivorans.


Assuntos
Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Clostridium/crescimento & desenvolvimento , Fermentação , Gases/metabolismo , Hidrogênio/metabolismo , Microbiologia Industrial , Redes e Vias Metabólicas , Aço
9.
Appl Microbiol Biotechnol ; 100(9): 4231-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26921183

RESUMO

Butanol production from carbon monoxide-rich waste gases or syngas is an attractive novel alternative to the conventional acetone-butanol-ethanol (ABE) fermentation. Solvent toxicity is a key factor reported in ABE fermentation with carbohydrates as substrates. However, in the gas-fermentation process, kinetic aspects and the inhibition effect of solvents have not thoroughly been studied. Therefore, different batch bottle experiments were carried out with the bacterial species Clostridium carboxidivorans using CO as carbon source for butanol-ethanol fermentation. A maximum specific growth rate of 0.086 ± 0.004 h(-1) and a biomass yield of 0.011 gbiomass/gCO were found, which is significantly lower than in other clostridia grown on sugars. Besides, three assays were carried out to check the inhibitory effect of butanol, ethanol, and their mixtures. Butanol had a higher inhibitory effect on the cells than ethanol and showed a lower IC50, reduced growth rate, and slower CO consumption with increasing alcohol concentrations. A concentration of 14-14.50 g/L butanol caused 50 % growth inhibition in C. carboxidivorans, and 20 g/L butanol resulted in complete inhibition, with a growth rate of 0 h(-1). Conversely, 35 g/L ethanol decreased by 50 % the final biomass concentration respect to the control and yielded the lowest growth rate of 0.024 h(-1). The inhibitory effect of mixtures of both alcohols was also checked adding similar, near identical, concentrations of each one. Growth decreased by 50 % in the presence of a total concentration of alcohols of 16.22 g/L, consisting of similar amounts of each alcohol. Occasional differences in initially added concentrations of alcohols were minimal. The lowest growth rate (0.014 h(-1)) was observed at the highest concentration assayed (25 g/L).


Assuntos
Butanóis/metabolismo , Butanóis/toxicidade , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Etanol/toxicidade , Antibacterianos/metabolismo , Antibacterianos/toxicidade , Biomassa , Biotransformação , Clostridium/crescimento & desenvolvimento , Concentração Inibidora 50
10.
Appl Microbiol Biotechnol ; 100(7): 3361-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26810079

RESUMO

The fermentation of waste gases rich in carbon monoxide using acetogens is an efficient way to obtain valuable biofuels like ethanol and butanol. Different experiments were carried out with the bacterial species Clostridium carboxidivorans as biocatalyst. In batch assays with no pH regulation, after complete substrate exhaustion, acetic acid, butyric acid, and ethanol were detected while only negligible butanol production was observed. On the other side, in bioreactors, with continuous carbon monoxide supply and pH regulation, both C2 and C4 fatty acids were initially formed as well as ethanol and butanol at concentrations never reported before for this type of anaerobic bioconversion of gaseous C1 compounds, showing that the operating conditions significantly affect the metabolic fermentation profile and butanol accumulation. Maximum ethanol and butanol concentrations in the bioreactors were obtained at pH 5.75, reaching values of 5.55 and 2.66 g/L, respectively. The alcohols were produced both from CO fermentation as well as from the bioconversion of previously accumulated acetic and butyric acids, resulting in low residual concentrations of such acids at the end of the bioreactor experiments. CO consumption was often around 50% and reached up to more than 80%. Maximum specific rates of ethanol and butanol production were reached at pH 4.75, with values of 0.16 g/h*g of biomass and 0.07 g/h*g of biomass, respectively, demonstrating that a low pH was more favorable to solventogenesis in this process, although it negatively affects biomass growth which does also play a role in the final alcohol titer.


Assuntos
1-Butanol/metabolismo , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Ácido Acético/metabolismo , Anaerobiose , Técnicas de Cultura Celular por Lotes , Biocombustíveis , Reatores Biológicos , Butiratos/metabolismo , Ácidos Graxos/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Cinética
11.
Bioresour Technol ; 186: 122-127, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25812815

RESUMO

Fermentation of CO or syngas offers an attractive route to produce bioethanol. However, during the bioconversion, one of the challenges to overcome is to reduce the production of acetic acid in order to minimize recovery costs. Different experiments were done with Clostridium autoethanogenum. With the addition of 0.75 µM tungsten, ethanol production from carbon monoxide increased by about 128% compared to the control, without such addition, in batch mode. In bioreactors with continuous carbon monoxide supply, the maximum biomass concentration reached at pH 6.0 was 109% higher than the maximum achieved at pH 4.75 but, interestingly, at pH 4.75, no acetic acid was produced and the ethanol titer reached a maximum of 867 mg/L with minor amounts of 2,3-butanediol (46 mg/L). At the higher pH studied (pH 6.0) in the continuous gas-fed bioreactor, almost equal amounts of ethanol and acetic acid were formed, reaching 907.72 mg/L and 910.69 mg/L respectively.


Assuntos
Ácido Acético/metabolismo , Reatores Biológicos/microbiologia , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Fermentação/fisiologia , Biomassa , Gases/metabolismo , Concentração de Íons de Hidrogênio
12.
Int J Environ Res Public Health ; 12(1): 1029-43, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25608591

RESUMO

The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.05) on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L), EXP2 (pH = 4.75, YE 1 g/L) and EXP3 (pH = 5.75, YE 0.2 g/L). When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L) and products concentrations, i.e., acetic acid (2147.1 mg/L) and ethanol (352.6 mg/L). This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54.


Assuntos
Ácido Acético/metabolismo , Biocombustíveis/análise , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Biomassa , Reatores Biológicos
13.
Bioresour Technol ; 114: 518-22, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22487129

RESUMO

A two-level full factorial design was carried out in order to investigate the effect of four factors on the bioconversion of carbon monoxide to ethanol and acetic acid by Clostridium autoethanogenum: initial pH (4.75-5.75), initial total pressure (0.8-1.6 bar), cysteine-HCl·H(2)O concentration (0.5-1.2 g/L) and yeast extract concentration (0.6-1.6 g/L). The maximum ethanol production was enhanced up to 200% when lowering the pH and amount yeast extract from 5.75 to 4.75 g/L and 1.6 to 0.6 g/L, respectively. The regression coefficient, regression model and analysis of variance (ANOVA) were obtained using MINITAB 16 software for ethanol, acetic acid and biomass. For ethanol, it was observed that all the main effects and the interaction effects were found statistically significant (p<0.05). The comparison between the experimental and the predicted values was found to be very satisfactory, indicating the suitability of the predicted model.


Assuntos
Ácido Acético/metabolismo , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Etanol/isolamento & purificação , Etanol/metabolismo , Modelos Químicos , Biodegradação Ambiental , Biotransformação , Clostridium/classificação , Simulação por Computador , Interpretação Estatística de Dados , Análise Fatorial , Concentração de Íons de Hidrogênio , Modelos Estatísticos , Oxirredução , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA