Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130635, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460631

RESUMO

A natural material made of chitosan (CS) and algae (food-grade algae, FGA) was cross-linked and loaded onto a ruthenium metal organic framework to create a bio-adsorbent (Ru-MOF@CS/FGA composite sponge) with the aim of adsorbing and eliminating Brilliant green (BG) from aqueous solutions. A range of methods were employed to analyze the Ru-MOF@CS/FGA composite sponge, such as X-ray photoelectron spectroscopy (XPS) for elemental analysis, Fourier transform infrared spectroscopy (FTIR) to ascertain the function groups, and scanning electron microscopy (SEM) to establish the surface morphology, and powder X-ray diffraction (PXRD) to study of single and multi-phase polycrystalline materials. Brunauer-Emmett-Teller surface area (BET) confirmed the adsorbent's high surface area and pore volume (826.85 m2/g and 1.28 cm3/g, respectively) and decreased to 475.62 m2/g and 0.74 cm3/g after adsorption. Determine the several factors that affect the adsorption process, such as pH, the adsorbent's dose, the initial BG concentration, and the effect of salinity. The adsorption process was fitted to pseudo-second-order kinetics and Langmuir isotherms. Dubinin-Radushkevich analysis revealed that the adsorption energy was 23.8 kJ/mol, indicating chemisorption as the mode of adsorption. It was discovered through examining the impact of temperature and computing positive-charged enthalpy and entropy that the adsorption process was endothermic, meaning that it increased in response to temperature. It is possible to reuse the Ru-MOF@CS/FGA composite sponge six times with acceptable efficiency, no change in its chemical composition, and comparable FT-IR, XPS, and XRD data before and after each reuse. Examine the mechanisms of adsorbent-adsorbate interaction, which may involve H-bonding, n-π stacking, electrostatic forces, and pore filling. The adsorption results were optimized with the Box Behnken-design (BBD).


Assuntos
Quitosana , Compostos de Amônio Quaternário , Rutênio , Poluentes Químicos da Água , Quitosana/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
2.
ACS Omega ; 9(11): 13458-13468, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524465

RESUMO

The present study introduced a novel disposable screen-printed carbon electrodes (SPCEs) modified with copper oxide/zeolite nanostructures for eco-friendly selective differential pulse voltammetric quantification of tetrahydrozoline (THZ) in eyedrop samples and biological fluids. Modification of the electrode matrix with copper oxide nanoparticles/zeolite nanostructures (CuONPs/ZY) with their effective and synergistic electrocatalytic activity enhanced the electrode performance against electrooxidation of THZ at 0.960 V in BR at pH 9.0 with a diffusion-controlled reaction mechanism. The tentative oxidation mechanism based on molecular orbital calculations postulates the oxidation of THZ molecules through oxidation of a nitrogen atom five-membered ring and the participation of two electrons/protons in the electrode reaction. Linear calibration curves were illustrated within a wide THZ concentration range from 0.24 to 57.2 µg mL-1 recording a limit of detection (LOD) value of 0.0799 µg mL-1. The CuONPs/ZY/SPEs exhibited improved performance compared with the sole reported THZ sensor-based gold film-plated carbon paste electrodes, in addition to their high reproducibility of fabrication and measurement and prolonged shelf lifetime. Tetrahydrozoline was successfully assayed in the presence of excipients, degradation products, and chloramphenicol. The presented voltammetric sensor can be considered as an eco-friendly and reliable analytical approach for monitoring THZ residues in eye drop samples and biological fluids with high recovery compared with the official pharmacopeial analytical protocol. The presented sensors were assessed according to an EcoScale tool and also compared with the reported THZ sensor.

3.
ACS Omega ; 8(33): 30374-30388, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636940

RESUMO

This study looked at the doxorubicin hydrochloride (DOX) anticancer drug's adsorption characteristics on a silver-based metal-organic framework (Ag-MOF). X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used for the characterization of Ag-MOF. The pore volume and surface area of Ag-MOF were determined through Brunauer-Emmett-Teller (BET) testing at 77 K to be 0.509 cm3/g and 676.059 m2/g, respectively. Adsorption at pH 6 was established to be the best for DOX compared to alkaline solution. Ag-MOF has a good capacity for eliminating DOX (1.85 mmol/g), according to adsorption experiments. From the adsorption results, we can find that Langmuir is the most fitted adsorption isotherm model and the pseudo-second order model best fitted the adsorption kinetics. The energy of activation for adsorption, which was determined to be 15.23 kJ/mol, also supported a chemisorption process. The mechanism of adsorption was evaluated, and details of all possible interactions between DOX and Ag-MOF were illustrated. On the other hand, while examining the impact of temperature, we identified the thermodynamic constraints as ΔG°, ΔH°, and ΔS° and confirmed that the reaction was an endothermic one and spontaneous. Even after numerous reuse cycles, the efficiency remained constant. The synthetic adsorbent was remarkably recyclable at a rate of more than 91.6%. By using the MTT assay, the cytotoxicity of the tested Ag-MOF and DOX@Ag-MOF against human breast cancer cells (MCF-7) was evaluated in vitro. The in vitro antimicrobial activity of Ag-MOF and DOX@Ag-MOF was also tested.

4.
ACS Omega ; 8(21): 19006-19015, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273581

RESUMO

Herein, the fabrication and full characterization of a novel atomoxetine (ATX) voltammetric carbon paste electrode (CPE) fortified with iron oxide nanoparticles (FeONPs) is demonstrated. Modification of the carbon paste matrix with the metallic oxide nanostructure provides proper electrocatalytic activity against the oxidation of ATX molecules at the carbon paste surface, resulting in a noticeable improvement in the performance of the sensor. At the recommended pH value, ATX recorded an irreversible anodic peak at 1.17 V, following a diffusion-controlled reaction mechanism. Differential pulse voltammograms exhibited peak heights linearly correlated to the ATX content within a wide concentration range from 45 to 8680 ng mL-1, with the limit of detection reaching 11.55 ng mL-1. The electrooxidation mechanism of the ATX molecule was proposed to be the oxidation of the terminal amino group accompanied by the transfer of two electrons and two protons. The fabricated FeONPs/CPE sensors exhibited enhanced selectivity and sensitivity and therefore can be introduced for voltammetric assaying of atomoxetine-indifferent pharmaceutical and biological samples in the presence of its degradation products and metabolites.

5.
Luminescence ; 38(8): 1431-1439, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37081595

RESUMO

Novel smart cotton diagnostic assay was developed toward onsite sensing of sweat pH variations for possible medical applications such as drug test and healthcare purposes. Humulus lupulus L. extract was obtained according to previously reported procedure. As reported by high-performance liquid chromatography (HPLC), the extract demonstrated the presence of hop acids, prenylchalcones, and prenylflavanones, which is responsible for the colorimetric changes. The extract was applied to cellulose fibers employing potassium aluminum sulfate as mordant. This was observed by the formation of mordant/xanthohumol nanoparticles onto cotton surface. The absorption spectra and CIE (Commission Internationale de l'Eclairage) Lab screening of the prepared cotton assay showed colorimetric changes in association with hypsochromic shift from 600 nm to 433 nm upon exposure to sweat simulant fluid (pH < 7). The biochromic activity of the xanthohumol-finished cotton depends mainly on the halochromic performance of the xanthohumol chromophore to show a colorimetric switch from yellow to white owing to intramolecular charge transfer in the xanthohumol molecule. No substantial defects were detected in gas-permeability and stiffness of the treated fabrics. Satisfactory fastness was approved for the xanthohumol-dyed diagnostic cotton assay.


Assuntos
Humulus , Humulus/química , Suor/química , Colorimetria , Flavonoides/química , Concentração de Íons de Hidrogênio , Extratos Vegetais/química
6.
Luminescence ; 38(8): 1440-1448, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37085957

RESUMO

Pentafluoroaryl analogues have been found to exhibit para specific nucleophilic aromatic substitution (SN Ar). Herein, we describe the use of SN Ar chemistry to create luminous perfluorinated symmetrical terphenyls. Both of SN Ar chemistry and copper(I)-catalysed decarboxylative cross-coupling were applied for the synthesis of the perfluorinated symmetrical terphenyls in high yields from the corresponding derivatives of aryl iodide and potassium salt of fluorobenzoate. A series of perfluorinated symmetrical terphenyls with different para alkoxy chains were synthesized. The synthesized perfluorinated terphenyl adducts were confirmed via elemental analysis, Fourier-transform infrared (FTIR), proton (1 H) carbon-13 (13 C) and fluorine-19 (19 F) nuclear magnetic resonance (NMR) spectra. The absorbance and fluorescence spectra showed solvatochromic activities. The new synthesized fluoroterphenyl hybrids were screened against antioxidant inspection over DPPH (2,2-diphenyl-1-picrylhydrazyl) performance, in assessment of vitamin C and butylated hydroxytoluene (BHT) as standard drugs exposed that fluoroterphenyl hybrid covering decyl hydrocarbons exhibited highest effectiveness through half maximal inhibitory concentration (IC50 ) values of 21.74 µg/ml. Additionally, molecular docking procedures of the synthesized fluoroterphenyl hybrids were employed by using protein data bank (PDB ID: 5IKQ). The docking simulation displayed convenient and recognized findings with the antioxidant examination.


Assuntos
Antioxidantes , Cobre , Antioxidantes/química , Simulação de Acoplamento Molecular , Ácido Ascórbico , Espectroscopia de Ressonância Magnética
7.
ACS Omega ; 8(11): 10449-10458, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969426

RESUMO

The present work demonstrated the fabrication and the electrochemical characterization of novel printed electrochemical sensors integrated with an innovative nanosensing platform based on the synergic electrocatalytic effect of iron oxide nanoparticles (FeONPs) and reduced graphene oxide (rGO) for precise voltammetric determination of the antipsychotic drug lurasidone hydrochloride (LUH). The features of the electrode surface fabricated using the ordinary inkjet printer were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Among different ink formulations, integration of the printing ink with the ratio 15 mg FeONPs and 20 mg rGO was found to be the most appropriate for sensitive quantification of LUH in biological fluids and pharmaceutical formulations in the presence of LUH degradation products. Under the optimized experimental and electroanalytical parameters, the recorded square-wave voltammograms were correlated to LUH within the linear concentration ranging from 50 to 2150 ng mL-1 with detection limit and limit of quantification values of 15.64 and 47.39 ng mL-1, respectively. Based on the cyclic voltammograms recorded for LUH at different scan rates, the electrode reaction was assumed to be a diffusion reaction mechanism accompanied by the transfer of two electrons/protons through the oxidation of the five-membered ring nitrogen atom as assumed by the molecular orbital calculations carried out on the LUH molecule. The C max of LUH and the efficiency of the fabricated sensors enabled their clinical application for monitoring LUH in human biological fluids and pharmaceutical formulations in the presence of degradants for diverse quality control applications and green chemistry analysis.

8.
J Mol Recognit ; 36(6): e3013, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36999889

RESUMO

This paper presents the expansion of an optical, chemical sensor that can rapidly and reliably detect, quantify, and remove Ni(II) ions in oil products and electroplating wastewater sources. The sensor is based on mesoporous silica nanospheres (MSNs) that have an extraordinary surface area, uniform surface morphology, and capacious porosity, making them an excellent substrate for the anchoring of the chromoionophoic probe,3'-{(1E,1' E)-[(4-chloro-1,2 phenylene)bis (azaneylylidene)]-bis(methaneylylidene)}bis(2-hydroxybenzoic acid) (CPAMHP). The CPAMHP probe is highly selective and sensitive to Ni(II), enabling it to be used in naked-eye colorimetric recognition of Ni(II) ions. The MSNs provide several accessible exhibited sites for uniform anchoring of CPAMHP probe molecules, making it a viable chemical sensor even with the use of naked-eye sensing. The surface characters and structural analysis of the MSNs and CPAMHP sensor samples were examined using various techniques. The CPAMHP probe-anchored MSNs exhibit a clear and vivid color shift from pale yellow to green upon exposure to various concentrations of Ni(II) ions, with a reaction time down to approximately 1 minute. Furthermore, the MSNs can serve as a base to retrieve extremely trace amounts of Ni(II) ions, making the CPAMHP sensor a dual-functional device. The calculated limit of recognition for Ni(II) ions using the fabricated CPAMHP sensor samples is 0.318 ppb (5.43 × 10-9 M). The results suggest that the proposed sensor is a promising tool for the sensitive and reliable detection of Ni(II) ions in petroleum products and for removing Ni(II) ions in electroplating wastewater; the data indicate an excellent removal of Ni (II) up to 96.8%, highlighting the high accuracy and precision of our CPAMHP sensor.


Assuntos
Nanosferas , Petróleo , Dióxido de Silício/química , Galvanoplastia , Águas Residuárias , Nanosferas/química , Íons/química , Petróleo/análise
9.
Luminescence ; 38(5): 613-624, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929638

RESUMO

Novel thermochromic and vapochromic paper substrates were prepared via screen printing with anthocyanin extract in the presence of ferrous sulfate mordant, resulting in multi-stimuli responsive colorimetric paper sheets. Environmentally friendly anthocyanin extract was obtained from red-cabbage (Brassica oleracea var. capitata L.) to function as spectroscopic probe in coordination with ferrous sulfate mordant. Pink anthocyanin/resin nanocomposite films immobilized onto paper surface were developed by well-dispersion of anthocyanin extract as a colorimetric probe in a binding agent without agglomeration. As demonstrated by CIE colorimetric studies, the pink (λmax = 418 nm) film deposited onto paper surface turns greenish-yellow (λmax = 552 nm) upon heating from 25 to 75°C, demonstrating new thermochromic film for anti-counterfeiting applications. The thermochromic effects were investigated at different concentrations of the anthocyanin extract. Upon exposure to ammonia gas, the color of the anthocyanin-printed sheets changes rapidly from pink to greenish-yellow, and then immediately returns to pink after taking the gaseous ammonia stimulus away, demonstrating vapochromic effect. The current sensor strip showed a detection limit for ammonia gas in the range 50-300 ppm. Both thermochromism and vapochromism showed high reversibility without fatigue. In addition to studying the rheological properties of the prepared composites, the morphological and mechanical properties of the printed cellulose substrates were also studied.


Assuntos
Amônia , Antocianinas , Antocianinas/química , Celulose , Extratos Vegetais
10.
Microsc Res Tech ; 85(12): 3871-3881, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36239117

RESUMO

Simple and efficient detection and mapping method based on a strong turn-on fluorescent pigment was developed for fingerprint analysis. We present a phosphor powder characterized by strong emission which is useful to achieve better fingerprint detection on multicolored or photoluminescent surfaces, such as currency notes characterized by optically changeable inks and highly fluorescent positions, because it offers better contrast and reduce the difficulty of background interference. Novel photochromic ink was prepared to establish a fingerprinted colorless film onto cellulose documents with green emission for anticounterfeiting applications as illustrated by photoluminescence spectra. Inorganic/organic nanoscale composite ink was prepared from rare-earth doped aluminate phosphor nanoparticles (PNPs; 27-49 nm) dispersed in a polyacrylic acid binding agent. PNPs were dispersed efficiently in polyacrylic acid to generate a colorless mark. The produced photochromic inks were spray-coated onto off-white paper sheets enclosing invisible fingermarks, and then exposed to thermofixation. Photochromic film was detected on paper surface presenting a transparent appearance under visible daylight and switchable to green under UV light. The CIE Lab parameters and photoluminescence spectra were studied under visible light and ultraviolet irradiation. The fingerprinted sheets showed fluorescence band at 517 nm upon excitation at 366 nm, showing a bathochromic shift and reversible photochromism without fatigue. The morphologies of pigment phosphor particles and fingerprinted sheets were inspected. The rheological properties of ink and mechanical behavior of the fingerprinted paper samples were explored. HIGHLIGHTS: Novel smart ink with alkaline-earth aluminate and polyacrylic acid was developed. Dual-mode fluorescent photochromism was presented for latent fingerprint analysis. Off-white fingerprinted films under daylight showed color change to green under UV. Fluorescence band monitored at 517 nm upon excitation at 366 nm. Fluorescent fingermark on paper sheets demonstrated good photostability.


Assuntos
Tinta , Nanocompostos , Fluorescência , Celulose , Raios Ultravioleta
11.
ACS Omega ; 7(38): 34309-34316, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188290

RESUMO

In this study, novel fluorescent low molecular-weight organogelators are derived from diphenyl ethers and substituted with para-alkoxy groups of different aliphatic chain lengths. The present research promotes the preparation of innovative nanofeather-like assemblies from the synthesized diphenyl ether-derived organogelators. The gelation performance of the prepared alkoxy-substituted diphenyl ethers was reported. The synthesis procedure was achieved by using a base-catalyzed reaction of hydroxyl-substituted diphenyl with various alcohols of different aliphatic chain lengths. The chemical structures of the synthesized diphenyl ether derivatives were studied by 1H/13C NMR and infrared spectroscopy. Fluorescence and UV-vis absorption spectral analyses showed solvatochromism. The diphenyl ether derivatives with longer alkoxy terminal substituents showed enhanced thermoreversible gelation activity as compared to the diphenyl ether derivatives with shorter alkoxy terminal substituents. The morphological properties of the self-assembled diphenyl ethers were studied by transmission electron microscopy and scanning electron microscopy, which showed supramolecular architectures of highly ordered nanofeathers, enforced by van der Waals interactions and π-stacks. Depending on the length of the aliphatic tail, different morphologies were detected, including nanofeathers, nanofibers, and nanosheets. The antimicrobial and cytotoxic properties of the prepared diphenyl ether-derived organogelators were examined to confirm their possible use in various fields like drug delivery systems.

12.
Microsc Res Tech ; 85(12): 3860-3870, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36178460

RESUMO

The outstanding biodegradability, biocompatibility, affordability, and renewability of polylactic acid have made it a prominent biomaterial. Herein, an innovative, easy, and eco-friendly technique is used to prepare sodium polylactate (SP)-based nanofibers. Solution blowing spinning (SBS) was used to create fibrous mats of SP and polyvinyl alcohol (PVA). SBS's SP nanfibers were crosslinked using an aqueous solution of calcium chloride to produce moisture-resistant calcium polylactate nanofibrous spun mats. Both of UV-visible absorption spectra and transmission electron microscopy were utilized to study the produced zinc oxide (ZnO) nanoparticles (NPs) to indicate a diameter of around 15-23 nm with a high intensity absorption intensity at 370 nm. New polylactate copolymer was synthesized and characterized by infrared and NMR spectroscopic techniques. In order to prepare SP/PVA/ZnO nanocomposite nanofibers, various ZnO ratios were used. The morphologies of the composite nanofibers were investigated by infrared spectroscopy (FTIR), energy-dispersive X-ray analyzer, and scanning electron microscopy. The cytotoxicity tests of the prepared mat were studied by conducting experiments with L-929 cells at various time intervals. The prepared composite SP/PVA/ZnO nanofibers were subjected to cytotoxicity tests to determine their cytocompatibility. Results showed that those with ZnO concentrations between 0.5% and 2% were found to be less harmful than those with higher concentrations. A variety of bacterial species, including Bacillus pumilus and Staphylococcus aureus, as well as Klebseilla pneumoniae and Escherichia coli, were used to test the antibacterial properties of SP/PVA/ZnO spun mats. The ZnO NPs integrated in the SP/PVA fibrous mats were responsible for their antibacterial properties. After finding the appropriate concentration of ZnO that is least harmful while yet giving a satisfactory antibacterial activity, this biomaterial might be perfect for wound dressing applications. HIGHLIGHTS: New eco-friendly biodegradable sodium polylactate (SP) copolymer was synthesized. Zinc oxide nanoparticles (ZnO NPs) with a diameter of 15-23 nm were prepared. High antibacterial SP/PVA/ZnO fibers were prepared by solution blowing spinning. SP/PVA/ZnO nanofibers (180-220 nm) with various ratios of ZnO were presented. Cytotoxicity results showed that the cell viability decreases with increasing ZnO.


Assuntos
Nanofibras , Óxido de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens/microbiologia , Materiais Biocompatíveis , Escherichia coli , Nanofibras/química , Polímeros , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Sódio , Óxido de Zinco/farmacologia , Óxido de Zinco/química
13.
Luminescence ; 37(10): 1751-1759, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35906732

RESUMO

The chromophore 2-2-(3-cyano-5,5-dimethyl-4-((2-[thiazol-2-yl]hydrazono)methyl)-furan-2(5H)-ylidene)malononitrile (TzHTCF) was prepared by diazo-coupling of diazotized 2-aminothiazole with 3-cyano-2-(dicyanomethylene)-4,5,5-trimethylfuran (TCF). The TzHTCF absorption solvatochromism, in different polarity solvents, demonstrated a ΔEmax = +4.74 in which the positive sign implied the occurrence of a red shift and the TzHTCF lowest excited state was more polar than its ground state. In addition, the TzHTCF fluorescence spectrum produced a λem in the 416-670 nm range and was more dependent on the solvent polarity than the absorption λmax , despite both exhibiting a red shift of 24 and 254 nm, respectively. To discover the Stokes shift ( ∆ ν ¯ ) behaviour of the TzHTCF derivative, Lippert-Mataga and linear solvation-energy relationship (LSER) formulations were utilized in which the LSER approach displayed better results than the Lippert-Mataga method (R2 = 0.9931). Furthermore, the LSER showed that the absorption and fluorescence solvatochromic behaviours were dependent on the solvent's hydrogen-bond donor (α) and acceptor (ß), along with the solvent's polarizability (π*). Moreover, DFT calculations showed that TzHTCF has a planar configuration and its simulated absorption and emission spectra in dimethyl sulphoxide revealed that λmax primarily originated from the HOMO→LUMO and HOMO-1→LUMO transitions, respectively.


Assuntos
Dimetil Sulfóxido , Tiazóis , Teoria da Densidade Funcional , Furanos , Hidrogênio , Nitrilas , Solventes/química
14.
Luminescence ; 37(9): 1482-1491, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35859299

RESUMO

Nacre structure has aragonite polygonal tablets, tessellated to generate separate layers, and exhibits adjacent layers and tablets within a layer bonded by a biopolymer. Here, we report the development of a nacre-like organic/inorganic hybrid nanocomposite coating consisting of epoxy tablets as well as rare-earth-activated aluminate and graphene oxide tablet/tablet interfaces. The lanthanide-activated aluminate was prepared using a high temperature solid-state approach followed by top-down technology to provide the phosphor nanoparticles (PNPs). Graphene oxide nanosheets were prepared from graphite. The prepared epoxy/graphene/phosphor nanocomposites were applied onto mild steel. Covalent bonds were formed between epoxy polymer chains resin and the graphene oxide nanosheets. These interface interactions resulted in a tough surface, high tensile strength, and excellent durability. The use of phosphor in the nanoparticle form guaranteed that no agglomerations were produced throughout the hardening procedure by allowing better distribution of PNPs in the nacre-like matrix. The generated nacre-like substrates displayed reversible fluorescence. The excitation of the white coloured nacre-like coats at 367 nm resulted in a green emission band at 518 nm as designated by the Commission Internationale de l'éclairage (CIE) Laboratory and photoluminescence spectra. Various analysis methods were utilized to inspect the surface structure and elemental composition of the nacre-like coats. An improved hydrophobicity and mechanical characteristics were detected when increasing the phosphor concentration. Due to the astonishing characteristics of the prepared nacre-like composite paint, both ceramics and metals can benefit from the current simple strategy.


Assuntos
Grafite , Elementos da Série dos Lantanídeos , Nácar , Nanocompostos , Nanopartículas , Resinas Epóxi , Grafite/química , Nácar/química , Nanocompostos/química
15.
ACS Omega ; 7(19): 16766-16777, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601306

RESUMO

Persistent bad breath has been reported as a sign of serious diabetes health conditions. If an individual's breath has a strong odor of acetone, it may indicate high levels of ketones in the blood owing to diabetic ketoacidosis. Thus, acetone gas in the breath of patients with diabetes can be detected using the current easy-to-use fluorescent test dipstick. In another vein, rice straw waste is the most well-known solid pollutant worldwide. Thus, finding a simple technique to change rice straw into a valuable material is highly important. A straightforward and environmentally friendly approach for reprocessing rice straw as a starting material for the creation of fluorescent nitrogen-doped carbon dots (NCDs) has been established. The preparation process of NCDs was carried out via one-pot hydrothermal carbonization using NH4OH as a passivation substance. A testing strip was developed on the basis of cellulose CD nanoparticles (NPs) immobilized onto cellulose paper assay. The NCDs demonstrated a quantum yield of 23.76%. A fluorescence wavelength was detected at 443 nm upon applying an excitation wavelength of 354 nm. NCDs demonstrated remarkable selectivity for acetone gas as their fluorescence was definitely exposed to quenching by acetone as a consequence of the inner filter effect. A linear correlation was observed across the concentration range of 0.5-150 mM. To detect and measure acetone gas, the present cellulose paper strip has a "switch off" fluorescent signal. A readout limit was accomplished for an aqueous solution of acetone as low as 0.5 mM under ambient conditions. The chromogenic fluorescence of the cellulose assay responsiveness depends on the fluorescence quenching characteristic of the cellulose carbon dots in acetone. A thin fluorescent cellulose carbon dot layer was deposited onto the surface of cellulose strips by a simple impregnation process. CDs were made using NP morphology and analyzed using infrared spectroscopy and transmission electron microscopy. The carbon dot distribution on the paper strip was evaluated by scanning electron microscope and energy-dispersive X-ray analysis. The absorption and fluorescence spectral analyses were investigated. The paper sheets' mechanical qualities were also examined.

16.
Microsc Res Tech ; 85(9): 3104-3114, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35621710

RESUMO

Long-lasting phosphorescent nacre-like material was simply prepared from a nanocomposite of inorganic and organic materials. Low molecular weight unsaturated polyester (PET), graphene oxide (GO), and nanoparticles of rare-earth activated aluminate pigment were used in the preparation process of an organic/inorganic hybrid nanocomposite. Using methylethylketone peroxide (MEKP) as a hardener, we were able to develop a fluid solution that hardens within minutes at room temperature. Covalent and hydrogen bonds were introduced between the polyester resin and graphene oxide nanosheets. The interface interactions of those bonds resulted in toughness, excellent tensile strength, and high durability. The produced nacre substrates demonstrated long-persistent and reversible luminescence. The excitation of the produced nacre substrates at 365 nm resulted in a 524 nm emission. After being exposed to UV light, the photoluminescent nacre substrates became green. The increased superhydrophobic activity of the produced nacre substrates was achieved without affecting their physico-mechanical properties. HIGHLIGHTS: Colorless photoluminescent smart nacre-like nanocomposites were prepared. Graphene oxide and polyester were mixed with phosphor nanoparticles at 25°C. Photostable long-persistent phosphorescence lighting was observed in the dark. Photochromic change to green emission was detected under ultraviolet light. The nacre-like composites exhibit improved hardness and hydrophobicity.


Assuntos
Materiais Biomiméticos , Nácar , Nanocompostos , Materiais Biomiméticos/química , Materiais Dentários , Grafite , Nácar/química , Nanocompostos/química , Poliésteres
17.
Heliyon ; 7(11): e08485, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34901511

RESUMO

New pyrazole derivatives were prepared and used to synthesize new bioactive agents from Cu(II) complexes that have OSN donors. Analytical and spectral (IR, UV-Vis, MS, 1H NMR, ESR & XRD) instruments characterized these complexes as well as their corresponding ligands. The bonding mode has been modified from ligand to ligand and the molar ratio for isolated complexes has also varied (1:1/1:2, M:L). The geometry of isolated complexes was commonly proposed, based on electronic transitions and ESR spectral-parameters. Via computational approaches, these structures were optimized using standard programs (Gaussian 09 & HyperChem 8.1) under the required basis set. Consequently, important physical characteristics have been obtained after finishing the optimization process. Inhibition behavior of all new synthesizes was studied by MOE module as in-silico approach which conducted versus the crystal structure of NUDT5 protein (6gru) of breast cancer cells. The interaction features summarized from docking processes, reveal effective inhibition validity for new Cu(II) complexes versus breast cancer cells. This according to scoring energy values and the stability of docking complexes in true interaction path (bond length ≤3.5 Å) particularly with Cu(II)-L3 and Cu(II)-L4 complexes. This reflects the possibility of successful behavior during practical application through in-vitro assay that intended in this study. Finally, the degree of toxicity of such new compounds to the breast cancer cell line was determined by in-vitro screening. To judge perfectly on their toxicity, in-vitro screening must compared to positive control as Doxorubicin (reference drug). IC50 values were calculated and represent Cu(II) complexes as outstanding cytotoxic agents which revealed superiority on the reference drug itself.

18.
ACS Omega ; 6(41): 27315-27324, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693152

RESUMO

Photochromic materials have attracted broad interest to enhance the anti-counterfeiting of commercial products. In order to develop anti-counterfeiting mechanically reliable composite materials, it is urgent to improve the engineering process of both the material and matrix. Herein, we report on the development of anti-counterfeiting mechanically reliable nanocomposites composed of rare-earth doped aluminate strontium oxide phosphor (RESA) nanoparticles (NPs) immobilized into the thermoplastic polyurethane-based nanofibrous film successfully fabricated via the simple solution blowing spinning technology. The generated photochromic film exhibits an ultraviolet-stimulated anti-counterfeiting property. Different films of different emissive properties were generated using different total contents of RESA. Transmission electron microscopy was utilized to investigate the morphological properties of RESA NPs to display a particle diameter of 3-17 nm. The morphologies, compositions, optical transmittance, and mechanical performance of the produced photochromic nanofibrous films were investigated. Several analytical methods were employed, including energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectrometry. The fibrous diameter of RESA-TPU was in the range of 200-250 nm. In order to ensure the development of transparent RESA-TPU film, RESA must be prepared in the nanosized form to allow better dispersion without agglomeration in the TPU matrix. The luminescent RESA-TPU film displayed an absorbance intensity at 367 nm and two emission intensities at 431 and 517 nm. The generated RESA-TPU films showed an enhanced hydrophobicity without negatively influencing their original appearance and mechanical properties. Upon irradiation with ultraviolet light, the transparent nanofibrous films displayed rapid and reversible photochromism to greenish-yellow without fatigue. The produced anti-counterfeiting films demonstrated stretchable, flexible, and translucent properties. As a simple sort of anti-counterfeiting substrates, the current novel photochromic film provides excellent anti-counterfeiting strength at low-cost as an efficient method to develop versatile materials with high mechanical strength to create an excellent market as well as adding economic and social values.

19.
Luminescence ; 36(7): 1781-1792, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34309162

RESUMO

Simple preparation of flame-retardant, photoluminescent, and superhydrophobic smart nanocomposite coating was developed and applied onto cotton fibres using the simple pad-dry-cure technique. This novel strategy involved the immobilization of rare-earth-doped aluminium strontium oxide (ASO; SrAl2 O4 :Eu+2 ,Dy+3 ) nanoparticles, environmentally friendly room temperature vulcanizing silicone rubber (RTV) and environmentally friendly Exolet AP422 (Ex). The fabrics were also able to produce a char film in the fire-resistant assessment, providing fibres with a self-extinguishing characteristic. Furthermore, the fire-retardant performance of the coated cotton samples remained resistant to washing over 35 laundry cycles. The superhydrophobicity of the treated fabrics was monitored to improve by increasing the photoluminescent phosphor nanoparticles. The produced transparent photoluminescent film displayed an absorption at 360 nm and an emission at 526 nm. The photoluminescent fabrics were observed to generate different colorimetric shades, including white, green-yellow and bright white as monitored by Commission Internationale de l'Éclairage laboratory colorimetric coordinates. Slow emissions were detected for the treated cotton fabrics as monitored by emission, ultraviolet-visible light absorption, lifetime, and decay time spectral profiles to indicate glow in the dark phosphorescence effect. Both comfort and mechanical properties of the coated fibres were evaluated by measuring their bending length and air permeability.


Assuntos
Celulose , Nanocompostos , Fibra de Algodão , Estrôncio , Têxteis
20.
Inorg Chem Commun ; 126: 108472, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33531865

RESUMO

The salt of Aurintricarboxylic acid (ATA) was utilized in this study to synthesize new alkaline earth metal ion complexes. The analytical results proposed the isolation of mononuclear (Sr+2&Ba+2) and binuclear complexes (Mg+2&Ca+2). These complexes were analyzed by available analytical and spectral techniques. The tetrahedral geometry was suggested for all complexes (SP3) through bidentate binding mode of ligand with each central atom. UV-Vis spectra reveal the influence of L â†’ M charge transfer and the estimated optical band gap mostly appeared close to that for known semiconductors. XRD, SEM and TEM studies were executed for new complexes and reflects the nano-crystallinity and homogeneous morphology. The structural forms of ATA and its complexes were optimized by DFT/B3LYP under 6-31G and LANL2DZ basis sets. The output files (log, chk &fchk) were visualized on program screen and according to numbering scheme, many physical features were obtained. It is worthy to note that, a virtual simulation for the inhibition affinity towards COVID-19 proteins as proactive study before the actual application, was done for ATA and its complexes. This was done in addition to drugs currently applied in curing (Hydroxychloroquine & Lopinavir), for comparison and recommendation. Drug-likeness parameters were obtained to evaluate the optimal pharmacokinetics to ensure efficacy. Furthermore, simulated inhibition for COVID-19 cell-growth, was conducted by MOE-docking module. The negative allosteric binding mode represents good inhibitory behavior of ATA, Ba(II)-ATA complex and Lopinavir only. All interaction outcomes of Hydroxychloroquine drug reflect unsuitability of this drug in treating COVID-19. On the other hand, there is optimism for ATA and Lopinvir behaviors in controlling COVID-19 proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...