Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 256(6): 112, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367624

RESUMO

MAIN CONCLUSION: IRT1 intracellular dynamics and function are finely controlled through protein-protein interactions. In plants, iron uptake from the soil is tightly regulated to allow optimal growth and development. Iron acquisition in Arabidopsis root epidermal cells requires the IRT1 transporter, which also mediates the entry of non-iron metals. In this mini-review, we describe how protein-protein interactions regulate IRT1 intracellular dynamics and IRT1-mediated metal uptake to maintain iron homeostasis. Recent interactomic data provided interesting clues on IRT1 secretion and the putative involvement of COPI- and COPII-mediated pathways. Once delivered to the plasma membrane, IRT1 can interact with other components of the iron uptake machinery to form an iron acquisition complex that likely optimizes iron entrance in root epidermal cells. Then, IRT1 may be internalized from the plasma membrane. In the past decade, IRT1 endocytosis emerged as an essential mechanism to control IRT1 subcellular localization and thus to tune iron uptake. Interestingly, IRT1 endocytosis and degradation are regulated by its non-iron metal substrates in an ubiquitin-dependent manner, which requires a set of interacting-proteins including kinases, E3 ubiquitin ligases and ESCRT complex subunits. This mechanism is essential to avoid non-iron metal overload in Arabidopsis when the iron is scarce.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Cátions , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Transporte Biológico , Ubiquitina/metabolismo , Metais/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
2.
EMBO J ; 39(17): e104238, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667089

RESUMO

Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine-tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re-organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin-sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular , Proliferação de Células , Citocininas/metabolismo , Microtúbulos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Animais , Arabidopsis/genética , Citocininas/genética , Microtúbulos/genética , Raízes de Plantas/genética
3.
PLoS Biol ; 17(7): e3000085, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31295257

RESUMO

Signaling cross talks between auxin, a regulator of plant development, and Ca2+, a universal second messenger, have been proposed to modulate developmental plasticity in plants. However, the underlying molecular mechanisms are largely unknown. Here, we report that in Arabidopsis roots, auxin elicits specific Ca2+ signaling patterns that spatially coincide with the expression pattern of auxin-regulated genes. We have identified the single EF-hand Ca2+-binding protein Ca2+-dependent modulator of ICR1 (CMI1) as an interactor of the Rho of plants (ROP) effector interactor of constitutively active ROP (ICR1). CMI1 expression is directly up-regulated by auxin, whereas the loss of function of CMI1 associates with the repression of auxin-induced Ca2+ increases in the lateral root cap and vasculature, indicating that CMI1 represses early auxin responses. In agreement, cmi1 mutants display an increased auxin response including shorter primary roots, longer root hairs, longer hypocotyls, and altered lateral root formation. Binding to ICR1 affects subcellular localization of CMI1 and its function. The interaction between CMI1 and ICR1 is Ca2+-dependent and involves a conserved hydrophobic pocket in CMI1 and calmodulin binding-like domain in ICR1. Remarkably, CMI1 is monomeric in solution and in vitro changes its secondary structure at cellular resting Ca2+ concentrations ranging between 10-9 and 10-8 M. Hence, CMI1 is a Ca2+-dependent transducer of auxin-regulated gene expression, which can function in a cell-specific fashion at steady-state as well as at elevated cellular Ca2+ levels to regulate auxin responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Plant Cell ; 28(10): 2464-2477, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27754878

RESUMO

Differential cell growth enables flexible organ bending in the presence of environmental signals such as light or gravity. A prominent example of the developmental processes based on differential cell growth is the formation of the apical hook that protects the fragile shoot apical meristem when it breaks through the soil during germination. Here, we combined in silico and in vivo approaches to identify a minimal mechanism producing auxin gradient-guided differential growth during the establishment of the apical hook in the model plant Arabidopsis thaliana Computer simulation models based on experimental data demonstrate that asymmetric expression of the PIN-FORMED auxin efflux carrier at the concave (inner) versus convex (outer) side of the hook suffices to establish an auxin maximum in the epidermis at the concave side of the apical hook. Furthermore, we propose a mechanism that translates this maximum into differential growth, and thus curvature, of the apical hook. Through a combination of experimental and in silico computational approaches, we have identified the individual contributions of differential cell elongation and proliferation to defining the apical hook and reveal the role of auxin-ethylene crosstalk in balancing these two processes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
5.
Genes Dev ; 30(4): 471-83, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883363

RESUMO

To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.


Assuntos
Arabidopsis/fisiologia , Divisão Celular , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Técnicas de Ablação , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Comunicação Celular , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/citologia , Transporte Proteico , Transdução de Sinais
6.
Nature ; 516(7529): 90-3, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25409144

RESUMO

The prominent and evolutionarily ancient role of the plant hormone auxin is the regulation of cell expansion. Cell expansion requires ordered arrangement of the cytoskeleton but molecular mechanisms underlying its regulation by signalling molecules including auxin are unknown. Here we show in the model plant Arabidopsis thaliana that in elongating cells exogenous application of auxin or redistribution of endogenous auxin induces very rapid microtubule re-orientation from transverse to longitudinal, coherent with the inhibition of cell expansion. This fast auxin effect requires auxin binding protein 1 (ABP1) and involves a contribution of downstream signalling components such as ROP6 GTPase, ROP-interactive protein RIC1 and the microtubule-severing protein katanin. These components are required for rapid auxin- and ABP1-mediated re-orientation of microtubules to regulate cell elongation in roots and dark-grown hypocotyls as well as asymmetric growth during gravitropic responses.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hipocótilo/citologia , Hipocótilo/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Receptores de Superfície Celular/genética , Transdução de Sinais
7.
Dev Cell ; 21(4): 796-804, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21962902

RESUMO

Cytokinin is an important regulator of plant growth and development. In Arabidopsis thaliana, the two-component phosphorelay mediated through a family of histidine kinases and response regulators is recognized as the principal cytokinin signal transduction mechanism activating the complex transcriptional response to control various developmental processes. Here, we identified an alternative mode of cytokinin action that uses endocytic trafficking as a means to direct plant organogenesis. This activity occurs downstream of known cytokinin receptors but through a branch of the cytokinin signaling pathway that does not involve transcriptional regulation. We show that cytokinin regulates endocytic recycling of the auxin efflux carrier PINFORMED1 (PIN1) by redirecting it for lytic degradation in vacuoles. Stimulation of the lytic PIN1 degradation is not a default effect for general downregulation of proteins from plasma membranes, but a specific mechanism to rapidly modulate the auxin distribution in cytokinin-mediated developmental processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Citocininas/farmacologia , Endocitose , Ácidos Indolacéticos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/citologia , Transporte Proteico , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Western Blotting , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Organogênese , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...