Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 202(5): 2085-2099, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37603267

RESUMO

Diabetic people have a much higher rate of cardiovascular disease than healthy people. Therefore, heart and aortic tissues are target tissues in diabetic research. In recent years, the synthesis of new vanadium complexes and investigation of their antidiabetic/lowering effect on the blood glucose levels and antioxidant properties are increasing day by day. Our study aimed to examine the effects of synthesized oxovanadium (IV) complex of 2-[(2,4-dihydroxybenzylidene]hydrazine-1-[(N-(2-hydroxybenzylidene)](S-methyl)carbothioamide [VOL] on diabetic heart and aortic tissues, as well as in vitro lactate dehydrogenase (LDH) and myeloperoxidase (MPO) inhibition, antioxidant properties, and reducing power. Electrochemical characterization of the VOL was carried out by using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV) methods. In addition, in silico drug-likeness and ADME prediction were also investigated. For in vivo study, male Swiss albino rats were randomly selected and separated into four groups which are control, control + VOL, diabetic and diabetic + VOL. After the experimental procedure, biochemical parameters were investigated in homogenates of heart and aorta tissues. The results showed that VOL has a protective effect on heart and aortic tissue against oxidative stress. According to electrochemical experiments, one reversible oxidative couple and one irreversible reductive response were observed for the complex. In addition, in vitro LDH and MPO inhibition of VOL was examined. It was found that VOL had a protective effect on heart and aortic tissues of diabetic rats, and caused the inhibition of LDH and MPO in in vitro studies. On the other hand, evaluating the synthesized VOL according to in silico drug-likeness and absorption, distribution, metabolism, and excretion (ADME) prediction, it was found that VOL has drug-like properties and exhibited high gastrointestinal absorption. The VOL had a therapeutic impact on the heart and aortic tissues of diabetic rats, according to the findings.


Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Humanos , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Coração , Hipoglicemiantes/uso terapêutico , Estresse Oxidativo , Aorta , Glicemia/metabolismo
2.
ACS Nano ; 14(4): 4306-4315, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32181640

RESUMO

Understanding ion transport in nanoporous materials is critical to a wide variety of energy and environmental technologies, ranging from ion-selective membranes, drug delivery, and biosensing, to ion batteries and supercapacitors. While nanoscale transport is often described by continuum models that rely on a point charge description for ions and a homogeneous dielectric medium for the solvent, here, we show that transport of aqueous solutions at a hydrophobic interface can be highly dependent on the size and hydration strength of the solvated ions. Specifically, measurements of ion current through single silicon nitride nanopores that contain a hydrophobic-hydrophilic junction show that transport properties are dependent not only on applied voltage but also on the type of anion. We find that in Cl--containing solutions the nanopores only conducted ionic current above a negative voltage threshold. On the other hand, introduction of large polarizable anions, such as Br- and I-, facilitated the pore wetting, making the pore conductive at all examined voltages. Molecular dynamics simulations revealed that the large anions, Br- and I-, have a weaker solvation shell compared to that of Cl- and consequently were prone to migrate from the aqueous solution to the hydrophobic surface, leading to the anion accumulation responsible for pore wetting. The results are essential for designing nanoporous systems that are selective to ions of the same charge, for realization of ion-induced wetting in hydrophobic pores, as well as for a fundamental understanding on the role of ion hydration shell on the properties of solid/liquid interfaces.

3.
Sci Adv ; 5(2): eaav2568, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30783627

RESUMO

Reproducing the exquisite ion selectivity displayed by biological ion channels in artificial nanopore systems has proven to be one of the most challenging tasks undertaken by the nanopore community, yet a successful achievement of this goal offers immense technological potential. Here, we show a strategy to design solid-state nanopores that selectively transport potassium ions and show negligible conductance for sodium ions. The nanopores contain walls decorated with 4'-aminobenzo-18-crown-6 ether and single-stranded DNA (ssDNA) molecules located at one pore entrance. The ionic selectivity stems from facilitated transport of potassium ions in the pore region containing crown ether, while the highly charged ssDNA plays the role of a cation filter. Achieving potassium selectivity in solid-state nanopores opens new avenues toward advanced separation processes, more efficient biosensing technologies, and novel biomimetic nanopore systems.


Assuntos
Biomimética , Nanoporos , Potássio/química , Biomimética/métodos , Modelos Teóricos , Nanotecnologia , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...