Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 27(6): 856-65, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16105681

RESUMO

Amphiphilic graft copolymers having polysulfone (PSf) backbones and poly(ethylene glycol) (PEG) side chains were synthesized via reaction of an alkoxide formed from PEG and a base (sodium hydride) with chloromethylated polysulfone. The resulting polysulfone-graft-poly(ethylene glycol), PSf-g-PEG, materials were hydrophilic but water insoluble, rendering them potentially useful as biomaterial coatings. PSf-g-PEG films exhibited high resistance to protein adsorption and cell attachment. When used as an additive in PSf membranes prepared by immersion precipitation, the graft copolymer preferentially segregates to the membrane surface, delivering enhanced wettability, porosity and protein resistance compared to unmodified PSf membranes. The surface properties of PSf-g-PEG modified membranes render them desirable candidates for hemodialysis.


Assuntos
Polietilenoglicóis/química , Polímeros/química , Sulfonas/química , Animais , Linhagem Celular , Cloro/química , Espectroscopia de Ressonância Magnética , Metilação , Camundongos , Microscopia Eletrônica de Varredura , Estrutura Molecular , Polietilenoglicóis/síntese química
2.
Nature ; 426(6965): 424-8, 2003 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-14647377

RESUMO

The manufacturing of plastics traditionally involves melt processing at temperatures typically greater than 200 degrees C-to enable extrusion or moulding under pressure into desired forms-followed by solidification. This process consumes energy and can cause substantial degradation of polymers and additives (such as flame retardants and ultraviolet stabilizers), limiting plastics performance and recyclability. It was recently reported that the application of pressure could induce melt-like behaviour in the block copolymer polystyrene-block-poly(n-butyl methacrylate) (PS-b-PBMA), and this behaviour has now been demonstrated in a range of other block copolymer systems. These polymers have been termed baroplastics. However, in each case, the order-to-disorder transition, which gives rise to the accompanying change in rheology from soft solid to melt, was observed at temperatures far exceeding the glass transition temperatures (T(g)) of both components. Here we show that baroplastic systems containing nanophase domains of one high-T(g) and one low-T(g) component can exhibit melt-like flow under pressure at ambient temperature through an apparent semi-solid partial mixing mechanism that substantially preserves the high-T(g) phase. These systems were shredded and remoulded ten times with no evident property degradation. Baroplastics with low-temperature formability promise lower energy consumption in manufacture and processing, reduced use of additives, faster production and improved recyclability, and also provide potential alternatives to current thermoplastic elastomers, rubber-modified plastics, and semi-crystalline polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...